

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Primitive axial algebras of Jordan type

ALGEBRA

J.I. Hall^{a,*}, F. Rehren^b, S. Shpectorov^b

 ^a Department of Mathematics, Michigan State University, Wells Hall, 619 Red Cedar Road, East Lansing, MI 48840, United States
^b School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

ARTICLE INFO

Article history: Received 7 March 2014 Available online 25 May 2015 Communicated by Alberto Elduque

Keywords: Axial algebra 3-Transpositions Griess algebra Majorana algebra Jordan algebra

ABSTRACT

An axial algebra over the field \mathbb{F} is a commutative algebra generated by idempotents whose adjoint action has multiplicity-free minimal polynomial. For semisimple associative algebras this leads to sums of copies of \mathbb{F} . Here we consider the first nonassociative case, where adjoint minimal polynomials divide $(x - 1)x(x - \eta)$ for fixed $0 \neq \eta \neq 1$. Jordan algebras arise when $\eta = \frac{1}{2}$, but our motivating examples are certain Griess algebras of vertex operator algebras and the related Majorana algebras. We study a class of algebras, including these, for which axial automorphisms like those defined by Miyamoto exist, and there classify the 2-generated examples. Always for $\eta \neq \frac{1}{2}$ and in identifiable cases for $\eta = \frac{1}{2}$ this implies that the Miyamoto involutions are 3-transpositions, leading to a classification.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.03.026} 0021-8693 @ 2015 Elsevier Inc. All rights reserved.$

E-mail addresses: jhall@math.msu.edu (J.I. Hall), rehrenf@maths.bham.ac.uk (F. Rehren), s.shpectorov@bham.ac.uk (S. Shpectorov).

1. Introduction

Throughout we consider commutative \mathbb{F} -algebras A where \mathbb{F} is a field. We emphasize that our algebras will usually be nonassociative and may not have an identity element.

For the element a of A and $\lambda \in \mathbb{F}$, the λ -eigenspace for the adjoint \mathbb{F} -endomorphism $\operatorname{ad}_a: x \mapsto xa$ of A will be denoted $A_\lambda(a)$ (where we allow the possibility $A_\lambda(a) = 0$). If A is an associative algebra and a is an idempotent element, then $A = A_1(a) \oplus A_0(a)$ —the adjoint of the idempotent is semisimple with at most the two eigenvalues 0 and 1. Here we are interested in the minimal nonassociative case—semisimple idempotents whose adjoint eigenvalues are drawn from the set $\Lambda = \{1, 0, \eta\}$ for some $\eta \in \mathbb{F}$ with $0 \neq \eta \neq 1$.

An idempotent whose adjoint is semisimple will be called an *axis*. A commutative algebra generated by axes is then an *axial algebra*. The commutative algebra A over \mathbb{F} is a *primitive axial algebra of Jordan type* η provided it is generated by a set of axes with each member a satisfying:

- (a) $A = A_1(a) \oplus A_0(a) \oplus A_\eta(a)$.
- (b) $A_1(a) = \mathbb{F}a$.
- (c) $A_0(a)$ is a subalgebra of A.
- (d) For all $\delta, \epsilon \in \pm$,

 $A_{\delta}(a)A_{\epsilon}(a) \subseteq A_{\delta\epsilon}(a) ,$

where $A_{+}(a) = A_{1}(a) \oplus A_{0}(a)$ and $A_{-}(a) = A_{\eta}(a)$.

Examples include Jordan algebras that are generated by idempotents [17]. These occur for $\eta = \frac{1}{2}$, although this is the case in which we say the least. Instead our motivation comes from the values $\eta = \frac{1}{4}$ and $\eta = \frac{1}{32}$, which arise as special cases of $\Lambda = \{1, 0, \frac{1}{4}, \frac{1}{32}\}$. Algebras of this latter type are provided by Griess algebras associated with vertex operator algebras and Majorana algebras [15,20,22,27].

A major accomplishment in the Griess algebra case was Sakuma's Theorem [27] which classified all 2-generated subalgebras. See also [15,16,12]. The following similar theorem is a central result of this paper.

(1.1). Theorem. Let \mathbb{F} be a field of characteristic not two with $\eta \in \mathbb{F}$ for $0 \neq \eta \neq 1$. Let A be a primitive axial \mathbb{F} -algebra of Jordan type η that is generated by two axes. Then we have one of the following:

- (1) A is an algebra \mathbb{F} of type 1A over \mathbb{F} ;
- (2) A is an algebra $\mathbb{F} \oplus \mathbb{F}$ of type 2B over \mathbb{F} ;
- (3) A is an algebra of type $3C(\eta)$ of dimension 3 over \mathbb{F} ;
- (4) $\eta = -1$ and A is an algebra of type $3C(-1)^{\times}$ of dimension 2 over \mathbb{F} ;

Download English Version:

https://daneshyari.com/en/article/4584257

Download Persian Version:

https://daneshyari.com/article/4584257

Daneshyari.com