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algebras this leads to sums of copies of F. Here we consider the
first nonassociative case, where adjoint minimal polynomials
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Axdal algebra divide (z — 1)z(z — n) for fixed 0 # n # 1. Jordan algebras
3-Transpositions arise when n = %, but our motivating examples are certain
Griess algebra Griess algebras of vertex operator algebras and the related
Majorana algebra Majorana algebras. We study a class of algebras, including
Jordan algebra these, for which axial automorphisms like those defined by

Miyamoto exist, and there classify the 2-generated examples.
Always for n # % and in identifiable cases for n = % this
implies that the Miyamoto involutions are 3-transpositions,
leading to a classification.
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1. Introduction

Throughout we consider commutative F-algebras A where F is a field. We emphasize
that our algebras will usually be nonassociative and may not have an identity element.

For the element a of A and A € F, the \-eigenspace for the adjoint F-endomorphism
adg: x — za of A will be denoted Ay (a) (where we allow the possibility Ax(a) = 0). If A
is an associative algebra and a is an idempotent element, then A = A;(a) ® Ao(a)—the
adjoint of the idempotent is semisimple with at most the two eigenvalues 0 and 1. Here
we are interested in the minimal nonassociative case—semisimple idempotents whose
adjoint eigenvalues are drawn from the set A = {1,0,n} for some n € F with 0 # n # 1.

An idempotent whose adjoint is semisimple will be called an azis. A commutative
algebra generated by axes is then an axial algebra. The commutative algebra A over F is
a primitive azial algebra of Jordan type n provided it is generated by a set of axes with
each member a satisfying:

As(a)Ac(a) C Ase(a),
where A, (a) = Ai(a) ® Ag(a) and A_(a) = A,(a).

Examples include Jordan algebras that are generated by idempotents [17]. These oc-
cur for n = %, although this is the case in which we say the least. Instead our motivation
comes from the values n = i and n = 3%, which arise as special cases of A = {1, 0, %, 3% .
Algebras of this latter type are provided by Griess algebras associated with vertex op-
erator algebras and Majorana algebras [15,20,22,27].

A major accomplishment in the Griess algebra case was Sakuma’s Theorem [27] which
classified all 2-generated subalgebras. See also [15,16,12]. The following similar theorem

is a central result of this paper.

(1.1). Theorem. Let F be a field of characteristic not two with n € F for 0 #n # 1. Let
A be a primitive axial F-algebra of Jordan type n that is generated by two axes. Then we
have one of the following:

(1) A is an algebra F of type 1A over F;

(2) Ais an algebra F @ F of type 2B over F;

(3) A is an algebra of type 3C(n) of dimension 3 over F;

(4) n=—1 and A is an algebra of type 3C(—1)* of dimension 2 over IF;
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