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An axial algebra over the field F is a commutative algebra 
generated by idempotents whose adjoint action has multipli-
city-free minimal polynomial. For semisimple associative 
algebras this leads to sums of copies of F. Here we consider the 
first nonassociative case, where adjoint minimal polynomials 
divide (x − 1)x(x − η) for fixed 0 �= η �= 1. Jordan algebras 
arise when η = 1

2 , but our motivating examples are certain 
Griess algebras of vertex operator algebras and the related 
Majorana algebras. We study a class of algebras, including 
these, for which axial automorphisms like those defined by 
Miyamoto exist, and there classify the 2-generated examples. 
Always for η �= 1

2 and in identifiable cases for η = 1
2 this 

implies that the Miyamoto involutions are 3-transpositions, 
leading to a classification.
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1. Introduction

Throughout we consider commutative F-algebras A where F is a field. We emphasize 
that our algebras will usually be nonassociative and may not have an identity element.

For the element a of A and λ ∈ F, the λ-eigenspace for the adjoint F-endomorphism 
ada: x �→ xa of A will be denoted Aλ(a) (where we allow the possibility Aλ(a) = 0). If A
is an associative algebra and a is an idempotent element, then A = A1(a) ⊕A0(a)—the 
adjoint of the idempotent is semisimple with at most the two eigenvalues 0 and 1. Here 
we are interested in the minimal nonassociative case—semisimple idempotents whose 
adjoint eigenvalues are drawn from the set Λ = {1, 0, η} for some η ∈ F with 0 �= η �= 1.

An idempotent whose adjoint is semisimple will be called an axis. A commutative 
algebra generated by axes is then an axial algebra. The commutative algebra A over F is 
a primitive axial algebra of Jordan type η provided it is generated by a set of axes with 
each member a satisfying:

(a) A = A1(a) ⊕A0(a) ⊕Aη(a).
(b) A1(a) = Fa.
(c) A0(a) is a subalgebra of A.
(d) For all δ, ε ∈ ±,

Aδ(a)Aε(a) ⊆ Aδε(a) ,

where A+(a) = A1(a) ⊕A0(a) and A−(a) = Aη(a).

Examples include Jordan algebras that are generated by idempotents [17]. These oc-
cur for η = 1

2 , although this is the case in which we say the least. Instead our motivation 
comes from the values η = 1

4 and η = 1
32 , which arise as special cases of Λ = {1, 0, 14 , 

1
32}. 

Algebras of this latter type are provided by Griess algebras associated with vertex op-
erator algebras and Majorana algebras [15,20,22,27].

A major accomplishment in the Griess algebra case was Sakuma’s Theorem [27] which 
classified all 2-generated subalgebras. See also [15,16,12]. The following similar theorem 
is a central result of this paper.

(1.1). Theorem. Let F be a field of characteristic not two with η ∈ F for 0 �= η �= 1. Let 
A be a primitive axial F-algebra of Jordan type η that is generated by two axes. Then we 
have one of the following:

(1) A is an algebra F of type 1A over F;
(2) A is an algebra F ⊕ F of type 2B over F;
(3) A is an algebra of type 3C(η) of dimension 3 over F;
(4) η = −1 and A is an algebra of type 3C(−1)× of dimension 2 over F;
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