

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Subgroups of polynomial automorphisms with diagonalizable fibers

ALGEBRA

Shigeru Kuroda¹

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

ARTICLE INFO

Article history: Received 30 October 2014 Available online 26 April 2015 Communicated by Kazuhiko Kurano

MSC: 14R10 13A50 14R20

Keywords: Kambayashi's Linearization Problem Polynomial automorphism

ABSTRACT

Let R be an integral domain over a field k, and G a subgroup of the automorphism group of the polynomial ring $R[x_1, \ldots, x_n]$ over R. In this paper, we discuss when G is diagonalizable under the assumption that G is diagonalizable over the field of fractions of R. We are particularly interested in the case where G is a finite abelian group. Kraft and Russell (2014) [8] imply that every finite abelian subgroup of $\operatorname{Aut}_R R[x_1, x_2]$ is diagonalizable if R is an affine PID over $k = \mathbf{C}$. One of the main results of this paper says that the same holds for a PID R over any field k containing enough roots of unity.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

For each commutative ring R, we denote by $R[\mathbf{x}] = R[x_1, \ldots, x_n]$ the polynomial ring in n variables x_1, \ldots, x_n over R, and by $\operatorname{Aut}_R R[\mathbf{x}]$ the automorphism group of the R-algebra $R[\mathbf{x}]$. We identify an endomorphism ϕ of the R-algebra $R[\mathbf{x}]$ with the n-tuple $(\phi(x_1), \ldots, \phi(x_n))$ of elements of $R[\mathbf{x}]$, where the composition is defined by $\phi \circ$ $\psi = (\phi(\psi(x_1)), \ldots, \phi(\psi(x_n)))$. Note that, if G is a subgroup of $\operatorname{Aut}_R R[\mathbf{x}]$, and S is a

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.04.011\\0021-8693/© 2015 Elsevier Inc. All rights reserved.$

E-mail address: kuroda@tmu.ac.jp.

 $^{^1}$ Partly supported by the Grant-in-Aid for Young Scientists (B) 24740022, Japan Society for the Promotion of Science.

commutative *R*-algebra, then $G_S := \{ \mathrm{id}_S \otimes \phi \mid \phi \in G \}$ is a subgroup of $\mathrm{Aut}_S S[\mathbf{x}]$. When $S = \kappa(\mathfrak{p})$ is the residue field of the localization $R_{\mathfrak{p}}$ of *R* at a prime ideal \mathfrak{p} of *R*, we denote G_S by $G_{\mathfrak{p}}$. If *R* is a domain, *K* always denotes the field of fractions of *R*.

Throughout this paper, let k be an arbitrary field. If R is a k-algebra, then $D_n(k) := \{\delta_{\mathbf{a}} \mid \mathbf{a} \in (k^*)^n\}$ is a subgroup of $\operatorname{Aut}_R R[\mathbf{x}]$, where we define $\delta_{\mathbf{a}} := (a_1 x_1, \ldots, a_n x_n)$ for each $\mathbf{a} = (a_1, \ldots, a_n) \in (k^*)^n$. We say that a subgroup G of $\operatorname{Aut}_R R[\mathbf{x}]$ is diagonalizable if there exists $\psi \in \operatorname{Aut}_R R[\mathbf{x}]$ such that $\psi^{-1} \circ G \circ \psi$ is contained in $D_n(k)$.

Now, assume that R is a k-domain. In this paper, we discuss the following problems.

Problem 1. Let G be a subgroup of $\operatorname{Aut}_R R[\mathbf{x}]$ such that $G_{(0)}$ is diagonalizable. Does it follow that G is diagonalizable?

If we regard $\operatorname{Aut}_R R[\mathbf{x}]$ as a subgroup of $\operatorname{Aut}_K K[\mathbf{x}]$, then the assumption of Problem 1 is equivalent to $\psi^{-1} \circ G \circ \psi \subset D_n(k)$ for some $\psi \in \operatorname{Aut}_K K[\mathbf{x}]$. When n = 2, this condition implies that $G_{\mathfrak{p}}$ is diagonalizable for any prime ideal \mathfrak{p} of R by van der Kulk [7] and Serre [14] (cf. Section 2 (c)). So we also consider the following problem for $n \geq 3$.

Problem 2. Let G be a subgroup of $\operatorname{Aut}_R R[\mathbf{x}]$ such that $G_{\mathfrak{p}}$ is diagonalizable for all the prime ideals \mathfrak{p} of R. Does it follow that G is diagonalizable?

We are particularly interested in the case where G is a finite abelian group. In fact, whether every finite abelian subgroup of $\operatorname{Aut}_{\mathbf{C}} \mathbf{C}[\mathbf{x}]$ is conjugate to a subgroup of $D_n(\mathbf{C})$ is a difficult problem with little progress for $n \geq 3$ (see [5] for the case n = 2). This problem is a special case of Kambayashi's Linearization Problem [6], and is open even for finite cyclic groups (cf. [9]). In the case of finite cyclic groups, the problem is also included in the list of "eight challenging open problems in affine spaces" by Kraft [10]. We mention that, over a field of positive characteristic, a negative answer to a similar problem is already given by Asanuma [1]. It seems more difficult to diagonalize G in the case of positive characteristic than the other case.

Now, let us state our main result. Under the assumptions in Problems 1 and 2, there exists a subgroup \mathcal{G} of $(k^*)^n$ for which $G_{(0)}$ is conjugate to $\{\delta_{\mathbf{a}} \mid \mathbf{a} \in \mathcal{G}\}$ in $\operatorname{Aut}_K K[\mathbf{x}]$. We write $\mathbf{a}^i := a_1^{i_1} \cdots a_n^{i_n}$ for each $\mathbf{a} = (a_1, \ldots, a_n) \in \mathcal{G}$ and $i = (i_1, \ldots, i_n) \in \mathbf{Z}^n$, and define $M_{\mathcal{G}}$ to be the set of $i \in \mathbf{Z}^n$ such that $\mathbf{a}^i = 1$ for all $\mathbf{a} \in \mathcal{G}$. Let $\gamma_1, \ldots, \gamma_n$ be the images of the coordinate unit vectors of \mathbf{Z}^n in $\Gamma_{\mathcal{G}} := \mathbf{Z}^n/M_{\mathcal{G}}$. For each i, let $\Gamma_{\mathcal{G}}^{(i)}$ be the subgroup of $\Gamma_{\mathcal{G}}$ generated by γ_j for $1 \leq j \leq n$ with $j \neq i$.

The following theorem is the main result of this paper.

Theorem 1.1. (i) When n = 2, Problem 1 has an affirmative answer in the following two cases:

- (1) R is a PID.
- (2) R is a regular UFD, and $\Gamma_{\mathcal{G}}^{(1)}$ or $\Gamma_{\mathcal{G}}^{(2)}$ is not equal to $\Gamma_{\mathcal{G}}$.

Download English Version:

https://daneshyari.com/en/article/4584276

Download Persian Version:

https://daneshyari.com/article/4584276

Daneshyari.com