

Contents lists available at ScienceDirect

## Journal of Algebra

www.elsevier.com/locate/jalgebra



# On strongly F-regular inversion of adjunction



### Omprokash Das <sup>1</sup>

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, United States

#### ARTICLE INFO

Article history: Received 27 March 2014 Available online 17 April 2015 Communicated by Steven Dale Cutkosky

Keywords:
Algebraic geometry
Birational geometry
Positive characteristic
F-singularities
Inversion of adjunction
Strongly F-regular
Sharply F-pure
Purely F-regular
KLT
PLT

#### ABSTRACT

In this article we give two independent proofs of the positive characteristic analog of the log terminal inversion of adjunction. We show that for a pair (X,S+B) in characteristic p>0, if  $(S^n,B_{S^n})$  is strongly F-regular, then S is normal and (X,S+B) is purely F-regular near S. We also answer affirmatively an open question about the equality of F-Different and Different.

© 2015 Elsevier Inc. All rights reserved.

#### Contents

| 1. | Introduction                                    | 208 |
|----|-------------------------------------------------|-----|
| 2. | Preliminaries                                   | 209 |
|    | 2.1. Notation and conventions                   | 209 |
|    | 2.2. Resolution of singularities                | 211 |
| 3. | Some lemmas and propositions                    | 212 |
| 4. | Inversion of adjunction                         | 217 |
| 5. | F-Different is not different from the Different | 222 |

E-mail address: das@math.utah.edu.

 $<sup>^1\,</sup>$  The author was partially supported by the FRG grant DMS-#1265261.

| 5.1.         | Some definitions                      | 222 |
|--------------|---------------------------------------|-----|
| 5.2.         | Equality of F-Different and Different | 222 |
| Acknowledge  | ments                                 | 224 |
| References . |                                       | 225 |
|              |                                       |     |

#### 1. Introduction

In characteristic 0 it is well known that if (X, S + B) is a pair where  $\lfloor S + B \rfloor = S$  is irreducible and reduced, then (X, S + B) is plt near S if and only if  $(S^n, B_{S^n})$  is klt, where  $S^n \to S$  is the normalization of S and  $K_{S^n} + B_{S^n} = (K_X + S + B)|_{S^n}$  is defined by adjunction. The proof follows from the resolution of singularities and the relative Kawamata–Viehweg vanishing theorem. In characteristic p > 0 and in the higher dimension (dim > 3) the existence of the resolution of singularities is not known and the Kawamata–Viehweg vanishing theorem is known to fail, so we cannot expect a similar proof here. In this article we give two independent proofs of the characteristic p > 0 analog of the 'Log terminal inversion of adjunction' mentioned above. We prove the following theorem.

**Theorem A** (Theorem 4.1, Corollary 5.4). Let (X, S+B) be a pair where X is a normal variety,  $S+B \geq 0$  is a  $\mathbb{Q}$ -divisor,  $K_X+S+B$  is  $\mathbb{Q}$ -Cartier and  $S = \lfloor S+B \rfloor$  is reduced and irreducible. Let  $\nu : S^n \to S$  be the normalization and write  $(K_X+S+B)|_{S^n} = K_{S^n}+B_{S^n}$ . If  $(S^n, B_{S^n})$  is strongly F-regular then S is normal, furthermore S is a unique center of sharp F-purity of (X, S+B) in a neighborhood of S and (X, S+B) is purely F-regular near S.

The first proof (Theorem 4.1) is a geometric proof based on characteristic 0 type of techniques and the second one (Corollary 5.4) is by characteristic p > 0 techniques.

We also answer affirmatively an open question about the equality of the F-Different and the Different asked by Schwede in [25]. Our second proof (Corollary 5.4) of the inversion of adjunction is an application of the equality of these two Differents combined with various known but non-trivial results in characteristic p > 0 (see [25,4] and [30]). Our proof of this equality also closes the gap in Takagi's proof of the equality of restriction of certain generalizations of test ideal sheaves (see [30, Theorem 4.4]), where it is assumed that these two Differents coincide.

We prove the following theorem.

**Theorem B** (Theorem 5.3). Let  $(X, S + \Delta \ge 0)$  be a pair, where X is a F-finite normal excellent scheme of pure dimension over a field k of characteristic p > 0 and  $S + \Delta \ge 0$  is a  $\mathbb{Q}$ -divisor on X such that  $(p^e - 1)(K_X + S + \Delta)$  is Cartier for some e > 0. Also assume that S is a reduced Weil divisor and  $S \wedge \Delta = 0$ . Then the F-Different, F-Diff $S^p$  ( $\Delta$ ) is

## Download English Version:

# https://daneshyari.com/en/article/4584301

Download Persian Version:

https://daneshyari.com/article/4584301

<u>Daneshyari.com</u>