

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On σ -subnormal and σ -permutable subgroups of finite groups

Alexander N. Skiba¹

Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus

ARTICLE INFO

Article history: Received 17 January 2015 Available online 26 April 2015 Communicated by E.I. Khukhro

MSC: 20D10 20D15 20D30

Keywords: Finite group σ -Group A complete Hall set of type σ σ -Subnormal subgroup σ -Permutable subgroup

ABSTRACT

Let $\sigma = {\sigma_i | i \in I}$ be some partition of the set \mathbb{P} of all primes, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Let G be a finite group. We say that G is: σ -primary if G is a σ_i -group for some $i \in I$; σ -soluble if every chief factor of G is σ -primary. We say that a set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of Hall subgroups of G, where H_i is σ -primary (i = 1, ..., t), is a complete Hall set of type σ of G if $(|H_i|, |H_j|) = 1$ for all $i \neq j$ and $\pi(G) = \pi(H_1) \cup \cdots \cup \pi(H_t)$. We say that a subgroup A of G is: σ -subnormal in G if there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_n = G$ such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i=1,\ldots,t$; σ -permutable in G if G has a complete Hall set \mathcal{H} of type σ such that A is \mathcal{H}^G -permutable in G, that is, $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$. We study the relationship between the σ -subnormal and σ -permutable subgroups of G. In particular, we prove that every σ -permutable subgroup of G is σ -subnormal, and we classify finite σ -soluble groups in which every σ -subnormal subgroup is σ -permutable.

© 2015 Elsevier Inc. All rights reserved.

E-mail address: alexander.skiba49@gmail.com.

Research of the author was supported by State Program of Fundamental Researches of Republic Belarus (Grant 20112850).

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. If n is an integer, then the symbol $\pi(n)$ denotes the set of all primes dividing |n|; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

We put $\sigma(n) = \{\sigma_i \cap \pi(n) \mid i \in I, \sigma_i \cap \pi(n) \neq \emptyset\}, \ \sigma(G) = \sigma(|G|)$ and we say that G is σ -primary if either G = 1 or $|\sigma(G)| = 1$.

A set S of Sylow subgroups of G is called a *complete set of Sylow subgroups* of G if S contains exact one Sylow p-subgroup of G for every prime p dividing |G|. By analogy with it, we say that a set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of Hall subgroups of G, where H_i is σ -primary $(i = 1, \ldots, t)$, is a *complete Hall set of* G of type σ if $(|H_i|, |H_j|) = 1$ for all $i \neq j$ and $\pi(G) = \pi(H_1) \cup \cdots \cup \pi(H_t)$. Following [1], the group G is a σ -group if it possesses a complete Hall set of type σ .

Let \mathcal{L} be some non-empty set of subgroups of G. Then a subgroup A of G is called \mathcal{L} -permutable if AH = HA for all $H \in \mathcal{L}$; \mathcal{L}^G -permutable if $AH^x = H^xA$ for all $H \in \mathcal{L}$ and all $x \in G$. If A is \mathcal{L}^G -permutable, where \mathcal{L} is a complete set of Sylow subgroups of G, then A is called S-quasinormal or S-permutable in G. By analogy with it, we say that a subgroup A of G is σ -permutable in G if G has a complete Hall set \mathcal{H} of type σ such that A is \mathcal{H}^G -permutable.

The S-permutable subgroups possess a series of interesting properties and they are closely related to subnormal subgroups. For instance, if H is an S-permutable subgroup of G, then H is subnormal in G (Kegel [2]) and the quotient H/H_G is nilpotent (Deskins [3]) and so, in fact, H^G/H_G is nilpotent. Moreover, H/H_G is nilpotent also in the case when H is subnormal and permutes with all members of some complete set of Sylow subgroups of G [4]. The S-permutable subgroups of G form a sublattice of the lattice of all subnormal subgroups of G (Kegel [2]). The description of PST-groups, that are groups, in which every subnormal subgroup is S-permutable, was first obtained by Agrawal [5], for the soluble case, and by Robinson in [6], for the general case. In the further publications, authors (see, for example, the recent papers [7–16]) have found out and described many other interesting characterizations of soluble PST-groups.

In fact, the following concept is a modification of the main concept in [17].

Definition 1.1. We say that a subgroup A of G is σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either A_{i-1} is normal in A_i or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, n$.

Before continuing, let's consider the following elementary example.

Example 1.2. Let p, q, r, t be different primes, where q and r divide p-1. Let A be a non-abelian group of order pr, T a group of order t and $P \times Q$ a non-abelian group of

Download English Version:

https://daneshyari.com/en/article/4584309

Download Persian Version:

https://daneshyari.com/article/4584309

Daneshyari.com