

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Real reductive Cayley groups of rank 1 and $2^{\,\ddagger}$

ALGEBRA

Mikhail Borovoi¹

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

A R T I C L E I N F O

Article history: Received 20 September 2013 Available online 29 April 2015 Communicated by Eva Bayer-Fluckiger

MSC: 20G20 20G15 14E05

Keywords: Linear algebraic group Cayley group Cayley map Equivariant birational isomorphism Algebraic surface Elementary link

ABSTRACT

A linear algebraic group G over a field K is called a Cayley K-group if it admits a Cayley map, i.e., a G-equivariant K-birational isomorphism between the group variety G and its Lie algebra. We classify real reductive algebraic groups of absolute rank 1 and 2 that are Cayley \mathbb{R} -groups.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a connected linear algebraic group defined over a field K, and let Lie(G) denote its Lie algebra. The following definitions are due to Lemire, Popov and Reichstein [12]:

* With an appendix by Igor Dolgachev. E-mail address: borovoi@post.tau.ac.il.

¹ Borovoi was partially supported by the Hermann Minkowski Center for Geometry.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.03.034 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.03.034 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.03.034 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0316 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0316 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0316 \\ 002$

Definitions 1.1. (See [12].) A Cayley map for G is a K-birational isomorphism $G \xrightarrow{\longrightarrow} Lie(G)$ which is G-equivariant with respect to the action of G on itself by conjugation and the action of G on Lie(G) via the adjoint representation. A linear algebraic K-group is called a Cayley group if it admits a Cayley map. A linear algebraic K-group is called a stably Cayley group if $G \times_K (\mathbb{G}_{m,K})^r$ is Cayley for some $r \geq 0$, where $\mathbb{G}_{m,K}$ denotes the multiplicative group.

Lemire, Popov and Reichstein [12] classified Cayley and stably Cayley simple groups over an algebraically closed field k of characteristic 0. Borovoi, Kunyavskiĭ, Lemire and Reichstein [2] classified stably Cayley simple K-groups, and later Borovoi and Kunyavskiĭ [3] classified stably Cayley semisimple K-groups, over an arbitrary field K of characteristic 0. Clearly any Cayley K-group is stably Cayley. In the opposite direction, some of the stably Cayley K-groups are known to be Cayley, see [12, Examples 1.9, 1.11 and 1.16]. For other stably Cayley K-groups, it is a difficult problem to determine whether they are Cayley or not. By [2, Lemma 5.4(c)] the answer to the question whether a K-group is Cayley depends only on the equivalence class of G up to inner twisting.

By [2, Corollary 7.1] all the reductive K-groups of rank ≤ 2 over a field K of characteristic 0 are stably Cayley (by the rank we always mean the *absolute* rank). We would like to know, which of those stably Cayley K-groups of rank ≤ 2 are Cayley.

The case of a simple group of type \mathbf{G}_2 was settled in [12, §9.2] and Iskovskikh's papers [9,10]. Namely, a simple group of type \mathbf{G}_2 over an algebraically closed field k of characteristic 0 is not Cayley. Hence no simple K-group of type \mathbf{G}_2 over a field K of characteristic 0 is Cayley.

Popov [15] proved in 1975 that, contrary to what was expected (cf. [13, Remarque, p. 14]), the group SL_3 over an *algebraically closed field k* of characteristic 0 is Cayley; see [12, Appendix] for Popov's original proof, and [12, §9.1] for an alternative proof.

Here we are interested in \mathbb{R} -groups, where \mathbb{R} denotes the field of real numbers. If G is an inner form of a split reductive \mathbb{R} -group, and $G_{\mathbb{C}} := G \times_{\mathbb{R}} \mathbb{C}$ is *stably Cayley* over \mathbb{C} , then by [2, Remark 1.8] G is *stably Cayley* over \mathbb{R} . Similarly, since $\mathbf{SL}_{3,\mathbb{C}}$ is *Cayley* over \mathbb{C} by Popov's theorem, one might expect that the split \mathbb{R} -group $\mathbf{SL}_{3,\mathbb{R}}$ is *Cayley* over \mathbb{R} . However, this turns out to be false, see Theorem 8.1 of Appendix A. On the other hand, the outer form \mathbf{SU}_3 of the split group $\mathbf{SL}_{3,\mathbb{R}}$ is Cayley, see Theorem 7.1 of Appendix A and Corollary 4.4.

We recall the classification of reductive K-groups of rank ≤ 2 . A reductive K-group of rank 1 is either a K-torus or a simple K-group of type \mathbf{A}_1 . A reductive K-group of rank 2 is either not semisimple, or semisimple of type $\mathbf{A}_1 \times \mathbf{A}_1$, or simple of one of the types \mathbf{A}_2 , $\mathbf{B}_2 = \mathbf{C}_2$, or \mathbf{G}_2 . If a reductive K-group of rank 2 is not semisimple, then either it is a K-torus or it is isogenous to the product of a one-dimensional K-torus and a simple K-group of type \mathbf{A}_1 .

We recall the classification of *real* simple groups of type \mathbf{A}_2 . Such an \mathbb{R} -group is isomorphic to one of the groups $\mathbf{SL}_{3,\mathbb{R}}$, $\mathbf{PGL}_{3,\mathbb{R}}$, \mathbf{SU}_3 , \mathbf{PGU}_3 , $\mathbf{SU}(2,1)$, or $\mathbf{PGU}(2,1)$. Here, following the Book of Involutions [11, §23], we write \mathbf{PGU}_n rather than \mathbf{PSU}_n for Download English Version:

https://daneshyari.com/en/article/4584311

Download Persian Version:

https://daneshyari.com/article/4584311

Daneshyari.com