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We present an algorithmic approach to the problem of the 
existence of spin structures on flat manifolds. We apply our 
method in the cases of flat manifolds of dimensions 5 and 6.
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1. Introduction

Let Γ be an n-dimensional crystallographic group, i.e. a discrete and cocompact sub-
group of the group E(n) = O(n) � Rn of isometries of the Euclidean space Rn. By the 
Bieberbach theorems (see [1–3]), Γ fits into short exact sequence

0 −→ Zn −→ Γ −→ G −→ 1, (1)

* Corresponding author.
E-mail addresses: rafal.lutowski@mat.ug.edu.pl (R. Lutowski), bputrycz@gmail.com (B. Putrycz).

1 The first author was supported by the National Science Center Poland grant No. 2013/09/B/ST1/04125.
2 The second author was partially supported by the Research Fund K.U. Leuven.

http://dx.doi.org/10.1016/j.jalgebra.2015.03.037
0021-8693/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2015.03.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:rafal.lutowski@mat.ug.edu.pl
mailto:bputrycz@gmail.com
http://dx.doi.org/10.1016/j.jalgebra.2015.03.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2015.03.037&domain=pdf


278 R. Lutowski, B. Putrycz / Journal of Algebra 436 (2015) 277–291

where Zn is a maximal abelian normal subgroup of Γ and G is a finite group, the so-called
holonomy group of Γ. When in addition Γ is torsionfree, then Γ is called a Bieberbach 
group. In this case the orbit space Rn/Γ is a flat manifold, i.e. a closed connected 
Riemannian manifold with sectional curvature equal to zero.

The existence of a spin structure on a manifold X allows us to define on X a Dirac 
operator. Every oriented flat manifold of dimension less than or equal to 3 admits a spin 
structure. In dimension 4, 24 out of 27 flat manifolds have spin structures (see [16]). In 
this paper we present an algorithm to determine the existence of a spin structure on 
a flat manifold and present some facts concerning spin structures on flat manifolds of 
dimensions 5 and 6.

Section 2 recalls some basic definitions and introduces the necessary notations con-
cerning Clifford algebras. The main goal of Section 3 is to present a more flexible form 
of a Pfäffle criterion of the existence of spin structures on flat manifolds. The key tool 
in looking for spin structures on a flat manifold is the restriction of its holonomy rep-
resentation to the Sylow 2-subgroup of the holonomy group. In Section 4 we show that 
this restriction can be realized in a very convenient form and in Section 5 we show its 
usage in the criterion mentioned above. The algorithm for determining spin structures 
on flat manifolds is presented in Section 6 and is followed by an example of its usage for 
a 5-dimensional flat manifold. The last section presents some facts about spin structures 
for 5- and 6-dimensional manifolds.

2. Clifford algebras and spin groups

Definition 1. Let n ∈ N. The Clifford algebra Cn is a real associative algebra with one, 
generated by elements e1, . . . , en, which satisfy relations:

∀1≤i<j≤n e2
i = −1 and eiej = −ejei.

Remark 1. We have the following R-algebras isomorphisms:

C0 ∼= R, C1 ∼= C, C2 ∼= H.

Remark 2. We may view Rn := span{e1, . . . , en} as a vector subspace of Cn, for n ∈ N.

Definition 2 (Three involutions). Let n ∈ N. We have the following involutions of Cn:

• ∗: Cn → Cn, defined on the basis of (the vector space) Cn by

∀1≤i1<i2<...<ik≤n (ei1 . . . eik)∗ = eik . . . ei1 ;

• ′: Cn → Cn, defined on the generators of (the algebra) Cn by

∀1≤i≤ne
′
i = −ei.
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