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If J is a finite-dimensional nilpotent algebra over a finite 
field k, the algebra group P = 1 + J admits a (standard) 
supercharacter theory as defined in [16]. If J is endowed 
with an involution σ, then σ naturally defines a group 
automorphism of P = 1 + J, and we may consider the fixed 
point subgroup CP (σ) = {x ∈ P : σ(x) = x−1}. Assuming that 
k has odd characteristic p, we use the standard supercharacter 
theory for P to construct a supercharacter theory for CP (σ). 
In particular, we obtain a supercharacter theory for the Sylow 
p-subgroups of the finite classical groups of Lie type, and thus 
extend in a uniform way the construction given by André 
and Neto in [7,8] for the special case of the symplectic and 
orthogonal groups.
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1. Introduction

The notion of a supercharacter theory of a finite group was introduced by P. Diaconis 
and I.M. Isaacs in [16] to generalise the basic characters defined by C. André in [2–4], 
and the transition characters defined by N. Yan in his PhD thesis [23] (see also [24]). 
Both basic and transition characters were introduced with the aim of approaching the 
usual character theory of the finite group UTn(k) consisting of n ×n unimodular upper-
triangular matrices over a finite field k of characteristic p. (By “unimodular”, we mean 
that all diagonal entries are equal to 1; we will refer to UTn(k) simply as a (finite) uni-
triangular group.) The basic idea is to coarsen the usual character theory of a group by 
replacing irreducible characters with linear combinations of irreducible characters that 
are constant on a set of clumped conjugacy classes.

Let G be a finite group, and write Irr(G) to denote the set of irreducible charac-
ters of G. (Throughout the paper, all characters are taken over the field C of complex 
numbers.) Let K be a partition of G, and let X be a partition of Irr(G). (Here, and 
throughout this paper, when we use the word “partition”, we require that the parts are 
all non-empty.) For each X ∈ X, we define

σX =
∑
ψ∈X

ψ(1)ψ, (1a)

and note that 
∑

X∈X σX = ρG, the regular character of G. (Recall that ρG(g) = 0 for 
all g ∈ G, g �= 1, and ρG(1) = |G|.) We recall from [16] that the pair (X, K) is called a 
supercharacter theory for G provided that the following conditions hold.

(S1) |X| = |K|.
(S2) {1} ∈ K.
(S3) For each X ∈ X, the character σX is constant on each member of K.

As shown in [16, Lemma 2.1] this definition is equivalent to the following (see [9]). 
A supercharacter theory for a finite group G is a pair (X, K) where K is a partition of G, 
X is a collection of characters of G, and the following conditions hold.

(S1′) |X| = |K|.
(S2′) Every irreducible character of G is a constituent of a unique χ ∈ X.
(S3′) Every χ ∈ X is constant on each member of K.

We refer to the elements of X as the supercharacters of G, and to each K ∈ K as a 
superclass of G. Regardless of which definition one chooses to work with, it is straight-
forward to verify that each superclass is a union of conjugacy classes of G and that each 
of the partitions K and X determines the other. The only significant difference between 
these two definitions is that the second approach can yield supercharacters which are 
multiples of the characters σX defined above.
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