

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A supercharacter theory for involutive algebra groups $\stackrel{\Rightarrow}{\approx}$

ALGEBRA

Carlos A.M. André ^{a,c,*}, Pedro J. Freitas ^{a,c}, Ana Margarida Neto ^{b,c}

 ^a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C6, Piso 2, 1749-016 Lisboa, Portugal
^b Instituto Superior de Economia e Gestão, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
^c Centro de Estruturas Lineares e Combinatórias, Instituto Interdisciplicar da

Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

ARTICLE INFO

Article history: Received 17 October 2013 Available online 6 March 2015 Communicated by Martin Liebeck

MSC: 20C15 20D15 20G40

Keywords: Finite unipotent groups Character theory Supercharacters and superclasses

ABSTRACT

If \mathcal{J} is a finite-dimensional nilpotent algebra over a finite field \mathbb{k} , the algebra group $P = 1 + \mathcal{J}$ admits a (standard) supercharacter theory as defined in [16]. If \mathcal{J} is endowed with an involution σ , then σ naturally defines a group automorphism of $P = 1 + \mathcal{J}$, and we may consider the fixed point subgroup $C_P(\sigma) = \{x \in P: \sigma(x) = x^{-1}\}$. Assuming that \mathbb{k} has odd characteristic p, we use the standard supercharacter theory for P to construct a supercharacter theory for $C_P(\sigma)$. In particular, we obtain a supercharacter theory for the Sylow p-subgroups of the finite classical groups of Lie type, and thus extend in a uniform way the construction given by André and Neto in [7,8] for the special case of the symplectic and orthogonal groups.

© 2015 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.02.015} 0021-8693/© 2015$ Elsevier Inc. All rights reserved.

 $^{^{\}star}$ This research was made within the activities of the Centro de Estruturas Lineares e Combinatórias and was partially supported by the Fundação para a Ciência e Tecnologia (Portugal) through the project PEst-OE/MAT/UI1431/2011.

^{*} Corresponding author.

E-mail addresses: caandre@fc.ul.pt (C.A.M. André), pjfreitas@fc.ul.pt (P.J. Freitas), ananeto@iseg.utl.pt (A.M. Neto).

1. Introduction

The notion of a supercharacter theory of a finite group was introduced by P. Diaconis and I.M. Isaacs in [16] to generalise the *basic characters* defined by C. André in [2–4], and the *transition characters* defined by N. Yan in his PhD thesis [23] (see also [24]). Both basic and transition characters were introduced with the aim of approaching the usual character theory of the finite group $UT_n(\Bbbk)$ consisting of $n \times n$ unimodular uppertriangular matrices over a finite field \Bbbk of characteristic p. (By "unimodular", we mean that all diagonal entries are equal to 1; we will refer to $UT_n(\Bbbk)$ simply as a (finite) *unitriangular group*.) The basic idea is to coarsen the usual character theory of a group by replacing irreducible characters with linear combinations of irreducible characters that are constant on a set of clumped conjugacy classes.

Let G be a finite group, and write Irr(G) to denote the set of irreducible characters of G. (Throughout the paper, all characters are taken over the field \mathbb{C} of complex numbers.) Let \mathcal{K} be a partition of G, and let \mathcal{X} be a partition of Irr(G). (Here, and throughout this paper, when we use the word "partition", we require that the parts are all non-empty.) For each $X \in \mathcal{X}$, we define

$$\sigma_X = \sum_{\psi \in X} \psi(1)\psi, \tag{1a}$$

and note that $\sum_{X \in \mathcal{X}} \sigma_X = \rho_G$, the regular character of G. (Recall that $\rho_G(g) = 0$ for all $g \in G, g \neq 1$, and $\rho_G(1) = |G|$.) We recall from [16] that the pair $(\mathcal{X}, \mathcal{K})$ is called a supercharacter theory for G provided that the following conditions hold.

- (S1) $|\mathcal{X}| = |\mathcal{K}|.$
- (S2) $\{1\} \in \mathcal{K}.$
- (S3) For each $X \in \mathfrak{X}$, the character σ_X is constant on each member of \mathcal{K} .

As shown in [16, Lemma 2.1] this definition is equivalent to the following (see [9]). A supercharacter theory for a finite group G is a pair $(\mathcal{X}, \mathcal{K})$ where \mathcal{K} is a partition of G, \mathcal{X} is a collection of characters of G, and the following conditions hold.

 $\begin{array}{ll} (\mathrm{S1'}) & |\mathfrak{X}| = |\mathcal{K}|.\\ (\mathrm{S2'}) & \mathrm{Every} \mbox{ irreducible character of } G \mbox{ is a constituent of a unique } \chi \in \mathfrak{X}.\\ (\mathrm{S3'}) & \mathrm{Every} \ \chi \in \mathfrak{X} \mbox{ is constant on each member of } \mathcal{K}. \end{array}$

We refer to the elements of \mathcal{X} as the *supercharacters* of G, and to each $K \in \mathcal{K}$ as a *superclass* of G. Regardless of which definition one chooses to work with, it is straightforward to verify that each superclass is a union of conjugacy classes of G and that each of the partitions \mathcal{K} and \mathcal{X} determines the other. The only significant difference between these two definitions is that the second approach can yield supercharacters which are multiples of the characters σ_X defined above.

Download English Version:

https://daneshyari.com/en/article/4584352

Download Persian Version:

https://daneshyari.com/article/4584352

Daneshyari.com