

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Epimorphisms of pseudo-quadratic polar spaces

ALGEBRA

Petra Schwer^{a,*}, Koen Struyve^b

 ^a Karlsruhe Institute of Technology, Department of Mathematics, Kaiserstr. 89-93, 76133 Karlsruhe, Germany
^b Ghent University, Department of Mathematics, Krijgslaan 281, S22, 9000 Ghent, Belgium

ARTICLE INFO

Article history: Received 31 October 2012 Available online 6 March 2015 Communicated by Gernot Stroth

MSC: 20E42 51E12 51E24

Keywords: Generalized polygon Spherical building Epimorphism

ABSTRACT

We classify the epimorphisms of the buildings $\mathsf{BC}_l(K,K_0,\sigma,L,q), \ l\geq 2,$ of pseudo-quadratic form type. This completes the classification of epimorphisms of irreducible spherical Moufang buildings of rank at least two.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to complete the classification of epimorphisms of irreducible spherical Moufang buildings of rank at least two. For projective planes and spaces defined over a skew field or octonion division algebra K such a classification is given by the work of André [1], Faulkner and Ferrar [3] and Skornjakov [5]. It is shown there that such epimorphisms essentially correspond with the total subrings of K, i.e. subrings $R \subset K$

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.01.028 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.01.028 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.01.028 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.01.028$

E-mail address: petra.schwer@kit.edu (P. Schwer).

such that $K = R \cup (R \setminus \{0\})^{-1}$. In [6] the second author derives some of the structure theory of epimorphisms of irreducible spherical Moufang buildings of rank at least two and uses this to show that when such a building is defined over a field (for a suitable definition), then these epimorphisms are closely related with affine buildings (and their non-discrete generalizations).

In view of these results, the only untreated case is that of the buildings $\mathsf{BC}_l(K, K_0, \sigma, L, q)$ $(l \ge 2)$ of pseudo-quadratic form type. We include the buildings $\mathsf{C}_l(K, K_0, \sigma)$ of involutory type in this class, which corresponds to the case L = 0. The main difference with the cases handled in [6] is that a total subring of a field always corresponds to a valuation of this field, while this is not true for skew fields in general. As a consequence one can no longer apply the rich theory of affine buildings, meaning that we have to construct the epimorphisms in a different, more ad hoc manner.

The precise statement of our classification can be found in Section 3. We note that in this paper we only consider type-preserving epimorphisms between (thick) buildings.

The first author is supported by the German Research Foundation (DFG), the second author by the Fund for Scientific Research – Flanders (FWO – Vlaanderen).

2. Polar spaces of pseudo-quadratic form type

In this section we define the polar spaces of interest in this paper. Our approach is based on [7, (16.5)]. Let K be a skew field and σ an involution of K, meaning σ is an anti-automorphism (so $(ab)^{\sigma} = b^{\sigma}a^{\sigma}$) with $\sigma^2 = \text{id. Let}$

$$K_{\sigma} = \{a + a^{\sigma} | a \in K\},\$$
$$K^{\sigma} = \{a | a \in K, a^{\sigma} = a\}.$$

Choose a $K_{\sigma} \subset K_0 \subset K^{\sigma}$ containing the element 1, such that for all $t \in K$ we have $t^{\sigma}K_0t = K_0$. Such a set is called an *involutory set*. If the characteristic of K is different from 2, then $K_{\sigma} = K_0 = K^{\sigma}$. Let L be a right vector space over K. A map $f: L \times L \to K$ is a *skew-hermitian sesquilinear form* on L with respect to σ , if $f(a, b)^{\sigma} = -f(b, a)$ and $f(at, bu) = t^{\sigma}f(a, b)u$ for all $a, b \in L$ and $t, u \in K$. A map $q: L \to K$ is a *skew-hermitian sesquilinear form* on L with respect to σ if f on L is a skew-hermitian sesquilinear form with respect to σ , such that the following two conditions are satisfied for all $a, b \in L$ and $t \in K$:

- $q(a+b) \equiv q(a) + q(b) + f(a,b) \mod K_0$,
- $q(at) \equiv t^{\sigma}q(a)t \mod K_0$.

If one moreover has that $q(a) \in K_0$ only if a = 0, then we say that q is anisotropic. If all of this is satisfied we say that the quintuple (K, K_0, σ, L, q) is an anisotropic skewhermitian pseudo-quadratic space. Download English Version:

https://daneshyari.com/en/article/4584354

Download Persian Version:

https://daneshyari.com/article/4584354

Daneshyari.com