On cliques in edge-regular graphs

Leonard H. Soicher
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

A R T I C L E I N F O

Article history:

Received 30 April 2014
Available online 11 September 2014
Communicated by William M.
Kantor and Charles Leedham-Green

Keywords:

Edge-regular graph
Orbital graph
Strongly regular graph
Clique
Maximum clique
Regular clique
Quasiregular clique
Delsarte bound
Hoffman bound
Partial geometry

A B S T R A C T

Let Γ be an edge-regular graph with given parameters (v, k, λ). We show how to apply a certain "block intersection polynomial" in two variables to determine a good upper bound on the clique number of Γ, and to obtain further information concerning the cliques S of Γ with the property that every vertex of Γ not in S is adjacent to exactly m or $m+1$ vertices of S, for some constant $m \geq 0$. Some interesting examples are studied using computation with groups and graphs.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we present new results concerning the cliques in an edge-regular graph Γ with given parameters. We show how to apply a certain "block intersection polynomial" $[5,12]$ to determine a good upper bound on the clique number of Γ, and to obtain

[^0]information on the cliques S of Γ with the property that every vertex of Γ not in S is adjacent to exactly m or $m+1$ vertices of S, for some constant $m \geq 0$.

Every orbital graph for a finite transitive permutation group is edge-regular, and we study some informative examples of orbital graphs using the permutation group functionality in GAP [8], to which Ákos Seress was a major contributor, together with the GAP package GRAPE [13] for computing with graphs with groups acting on them.

2. Definitions and background

All graphs in this paper are finite and undirected, with no loops and no multiple edges. A graph Γ is edge-regular with parameters (v, k, λ) if Γ has exactly v vertices, is regular of valency k, and every pair of adjacent vertices have exactly λ common neighbours. An orbital graph for a transitive permutation group G on a finite set Ω is a graph with vertex set Ω and edge set the G-orbit of some unordered pair $\{\alpha, \beta\}$ of distinct vertices, such that α and β are interchanged by some element of G. Such orbital graphs are edge-regular, and provide us with interesting examples. A graph Γ is strongly regular with parameters (v, k, λ, μ) if Γ is edge-regular with parameters (v, k, λ), and every pair of distinct nonadjacent vertices have exactly μ common neighbours. A clique in a graph Γ is a set of pairwise adjacent vertices, an s-clique is a clique of size s, and a maximum clique of Γ is a clique of the largest size in Γ. The size of a maximum clique in Γ, its clique number, is denoted by $\omega(\Gamma)$. The set of vertices adjacent to a vertex v in a graph Γ is denoted by $\Gamma(v)$.

For $n \geq k>0$, the Kneser graph $K(n, k)$ has as vertices the k-subsets of $\{1, \ldots, n\}$, with two vertices adjacent precisely when they are disjoint. For example, $K(5,2)$ is the Petersen graph. Observe that $K(n, k)$ is edge-regular, with parameters $\left(\binom{n}{k},\binom{n-k}{k},\binom{n-2 k}{k}\right)$.

A regular clique, or more specifically, an m-regular clique in a graph Γ is a clique S such that every vertex of Γ not in S is adjacent to exactly m vertices of S, for some constant $m>0$. For example, if $n \geq 3$, then each maximum clique of $K(2 n, 2)$ is ($n-2$)-regular. A quasiregular clique, or more specifically, an m-quasiregular clique in a graph Γ is a clique S of size at least 2 , such that every vertex of Γ not in S is adjacent to exactly m or $m+1$ vertices of S, for some constant $m \geq 0$. For example, if $n \geq 3$, then each maximum clique of $K(2 n-1,2)$ is $(n-3)$-quasiregular, and each maximum clique of $K(3 n, 3)$ is $(n-3)$-quasiregular. Note that a clique S of size at least 2 in a graph is m-regular precisely when S is both ($m-1$)-quasiregular and m-quasiregular.

Suppose that Γ is a strongly regular graph of valency $k>0$ and having least eigenvalue σ (the eigenvalues of (the adjacency matrix of) Γ are determined by its parameters). In his famous thesis, Delsarte [6] proved that

$$
\begin{equation*}
\omega(\Gamma) \leq\lfloor 1-k / \sigma\rfloor . \tag{1}
\end{equation*}
$$

Moreover, if Γ is connected and not complete, then a clique S of Γ is regular if and only if $|S|=1-k / \sigma$ (see [4, Proposition 1.3.2(ii)]).

https://daneshyari.com/en/article/4584412

Download Persian Version:
https://daneshyari.com/article/4584412

Daneshyari.com

[^0]: E-mail address: L.H.Soicher@qmul.ac.uk.

