

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On cliques in edge-regular graphs

Leonard H. Soicher

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

ARTICLE INFO

Article history: Received 30 April 2014 Available online 11 September 2014 Communicated by William M. Kantor and Charles Leedham-Green

Keywords: Edge-regular graph Orbital graph Strongly regular graph Clique Maximum clique Regular clique Quasiregular clique Delsarte bound Hoffman bound Partial geometry

ABSTRACT

Let Γ be an edge-regular graph with given parameters (v, k, λ) . We show how to apply a certain "block intersection polynomial" in two variables to determine a good upper bound on the clique number of Γ , and to obtain further information concerning the cliques S of Γ with the property that every vertex of Γ not in S is adjacent to exactly m or m+1 vertices of S, for some constant $m \geq 0$. Some interesting examples are studied using computation with groups and graphs.

 $\ensuremath{\textcircled{O}}$ 2014 Elsevier Inc. All rights reserved.

Dedicated to the memory of Ákos Seress

1. Introduction

In this paper we present new results concerning the cliques in an edge-regular graph Γ with given parameters. We show how to apply a certain "block intersection polynomial" [5,12] to determine a good upper bound on the clique number of Γ , and to obtain

ALGEBRA

E-mail address: L.H.Soicher@qmul.ac.uk.

information on the cliques S of Γ with the property that every vertex of Γ not in S is adjacent to exactly m or m + 1 vertices of S, for some constant $m \ge 0$.

Every orbital graph for a finite transitive permutation group is edge-regular, and we study some informative examples of orbital graphs using the permutation group functionality in GAP [8], to which Ákos Seress was a major contributor, together with the GAP package GRAPE [13] for computing with graphs with groups acting on them.

2. Definitions and background

All graphs in this paper are finite and undirected, with no loops and no multiple edges. A graph Γ is *edge-regular* with *parameters* (v, k, λ) if Γ has exactly v vertices, is regular of valency k, and every pair of adjacent vertices have exactly λ common neighbours. An *orbital graph* for a transitive permutation group G on a finite set Ω is a graph with vertex set Ω and edge set the G-orbit of some unordered pair $\{\alpha, \beta\}$ of distinct vertices, such that α and β are interchanged by some element of G. Such orbital graphs are edge-regular, and provide us with interesting examples. A graph Γ is *strongly regular* with *parameters* (v, k, λ, μ) if Γ is edge-regular with parameters (v, k, λ) , and every pair of distinct nonadjacent vertices have exactly μ common neighbours. A *clique* in a graph Γ is a set of pairwise adjacent vertices, an *s*-*clique* is a clique of size *s*, and a *maximum clique* of Γ is a clique of the largest size in Γ . The size of a maximum clique in Γ , its *clique number*, is denoted by $\omega(\Gamma)$. The set of vertices adjacent to a vertex v in a graph Γ is denoted by $\Gamma(v)$.

For $n \geq k > 0$, the Kneser graph K(n,k) has as vertices the k-subsets of $\{1, \ldots, n\}$, with two vertices adjacent precisely when they are disjoint. For example, K(5,2) is the Petersen graph. Observe that K(n,k) is edge-regular, with parameters $\binom{n}{k}, \binom{n-k}{k}, \binom{n-2k}{k}$.

A regular clique, or more specifically, an *m*-regular clique in a graph Γ is a clique S such that every vertex of Γ not in S is adjacent to exactly m vertices of S, for some constant m > 0. For example, if $n \ge 3$, then each maximum clique of K(2n, 2) is (n-2)-regular. A quasiregular clique, or more specifically, an *m*-quasiregular clique in a graph Γ is a clique S of size at least 2, such that every vertex of Γ not in S is adjacent to exactly m or m+1 vertices of S, for some constant $m \ge 0$. For example, if $n \ge 3$, then each maximum clique of K(2n-1,2) is (n-3)-quasiregular, and each maximum clique of K(3n,3) is (n-3)-quasiregular. Note that a clique S of size at least 2 in a graph is m-regular precisely when S is both (m-1)-quasiregular and m-quasiregular.

Suppose that Γ is a strongly regular graph of valency k > 0 and having least eigenvalue σ (the eigenvalues of (the adjacency matrix of) Γ are determined by its parameters). In his famous thesis, Delsarte [6] proved that

$$\omega(\Gamma) \le \lfloor 1 - k/\sigma \rfloor. \tag{1}$$

Moreover, if Γ is connected and not complete, then a clique S of Γ is regular if and only if $|S| = 1 - k/\sigma$ (see [4, Proposition 1.3.2(ii)]).

Download English Version:

https://daneshyari.com/en/article/4584412

Download Persian Version:

https://daneshyari.com/article/4584412

Daneshyari.com