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1. Introduction

In this paper we present new results concerning the cliques in an edge-regular graph I
with given parameters. We show how to apply a certain “block intersection polynomial”
[5,12] to determine a good upper bound on the clique number of I, and to obtain
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information on the cliques S of I" with the property that every vertex of I" not in S is
adjacent to exactly m or m 4+ 1 vertices of .S, for some constant m > 0.

Every orbital graph for a finite transitive permutation group is edge-regular, and
we study some informative examples of orbital graphs using the permutation group
functionality in GAP [8], to which Akos Seress was a major contributor, together with
the GAP package GRAPE [13] for computing with graphs with groups acting on them.

2. Definitions and background

All graphs in this paper are finite and undirected, with no loops and no multiple edges.
A graph I' is edge-regular with parameters (v, k, \) if I" has exactly v vertices, is regular
of valency k, and every pair of adjacent vertices have exactly A common neighbours.
An orbital graph for a transitive permutation group G on a finite set {2 is a graph with
vertex set 2 and edge set the G-orbit of some unordered pair {a, 8} of distinct vertices,
such that o and § are interchanged by some element of (. Such orbital graphs are
edge-regular, and provide us with interesting examples. A graph I is strongly regular
with parameters (v, k, \, p) if I' is edge-regular with parameters (v, k, \), and every pair
of distinct nonadjacent vertices have exactly ¢ common neighbours. A cligue in a graph I”
is a set of pairwise adjacent vertices, an s-clique is a clique of size s, and a mazimum
clique of I' is a clique of the largest size in I'. The size of a maximum clique in I, its
clique number, is denoted by w(I"). The set of vertices adjacent to a vertex v in a graph I"
is denoted by I'(v).

For n > k > 0, the Kneser graph K(n,k) has as vertices the k-subsets of
{1,...,n}, with two vertices adjacent precisely when they are disjoint. For example,
K (5,2) is the Petersen graph. Observe that K(n,k) is edge-regular, with parameters

n n—k n—2k
(G)s (") ()

A regular clique, or more specifically, an m-regular clique in a graph I" is a clique S
such that every vertex of I' not in S is adjacent to exactly m vertices of .S, for some
constant m > 0. For example, if n > 3, then each maximum clique of K(2n,2) is
(n — 2)-regular. A quasiregular clique, or more specifically, an m-quasiregular clique in
a graph I is a clique S of size at least 2, such that every vertex of I" not in S is adjacent
to exactly m or m+1 vertices of S, for some constant m > 0. For example, if n > 3, then
each maximum clique of K (2n — 1,2) is (n — 3)-quasiregular, and each maximum clique
of K(3n,3) is (n — 3)-quasiregular. Note that a clique S of size at least 2 in a graph is
m-regular precisely when S is both (m — 1)-quasiregular and m-quasiregular.

Suppose that I" is a strongly regular graph of valency k > 0 and having least eigen-
value o (the eigenvalues of (the adjacency matrix of) I" are determined by its parameters).
In his famous thesis, Delsarte [6] proved that

w(I) < [1 - k/o]. (1)

Moreover, if I' is connected and not complete, then a clique S of I" is regular if and only
if |S|=1—k/o (see [4, Proposition 1.3.2(ii)]).
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