

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

s-Arc-transitive graphs and normal subgroups $\stackrel{\Rightarrow}{\approx}$

ALGEBRA

Cai Heng Li $^{\rm a},$ Ákos Seress $^{\rm b},$ Shu Jiao Song $^{\rm a,*}$

 ^a School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
^b Department of Mathematics, The Ohio State University, Columbus, OH 43210-1174, USA

ARTICLE INFO

Article history: Received 30 April 2014 Available online 17 September 2014 Communicated by William M. Kantor and Charles Leedham-Green

MSC: 05C25 20B05

Keywords: s-Arc-transitive graphs Normal subgroups Normal covers Locally primitive

ABSTRACT

We study s-arc-transitive graphs with $s \ge 2$, and give a characterisation of the actions of vertex-transitive normal subgroups. An interesting consequence of this characterisation states that each non-bipartite 3-arc-transitive graph is a normal cover of a 2-arc-transitive graph admitting a simple group, or a locally primitive graph admitting a simple group with a soluble vertex stabiliser.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Denote by $\Gamma = (V, E)$ an undirected simple connected graph with vertex set V and edge set E. For a vertex $\alpha \in V$, denote by $\Gamma(\alpha)$ the set of vertices adjacent to α

* Corresponding author.

 $^{^{\}star}\,$ This work was partially supported by ARC Discovery Grant DP1096525.

E-mail addresses: cai.heng.li@uwa.edu.au (C.H. Li), shu-jiao.song@uwa.edu.au (S.J. Song).

in Γ . For a positive integer s, an s-arc of Γ is an (s + 1)-tuple $(\alpha_0, \alpha_1, \dots, \alpha_s)$ of vertices such that $\alpha_i \in \Gamma(\alpha_{i-1})$ for $1 \leq i \leq s$ and $\alpha_{i-1} \neq \alpha_{i+1}$ for $1 \leq i \leq s - 1$. If Γ is regular and $G \leq \operatorname{Aut} \Gamma$ is transitive on the set of s-arcs of Γ , then Γ is called a (G, s)-arc-transitive graph. A (G, s)-arc-transitive graph is sometimes simply called an s-arc-transitive graph, while a (G, 1)-arc-transitive is simply called G-arc-transitive. A (G, s)-arc-transitive.

Interest in s-arc-transitive graphs stems from a beautiful result of Tutte (1947) who proved that there exist no 6-arc-transitive trivalent graphs. Tutte's result was generalised by Weiss (1981) who proved that there exists no finite s-arc-transitive graph of valency at least 3 for $s \ge 8$. Since then, characterising s-arc-transitive graphs has received considerable attention in the literature (see for example [5,7,10,11,13,15]). Recall that, for a group H and a prime p, denote by $\mathbf{O}_p(H)$ the largest normal p-subgroup of H. For a group $G \le \operatorname{Aut} \Gamma$ and a vertex α , let $G_{\alpha}^{[1]}$ be the kernel of G_{α} acting on $\Gamma(\alpha)$, and $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha}/G_{\alpha}^{[1]}$ be the induced permutation group of G_{α} on $\Gamma(\alpha)$. A G-arc-transitive graph Γ is called G-locally primitive if G_{α} acts on $\Gamma(\alpha)$ primitively, that is, the induced permutation group $G_{\alpha}^{\Gamma(\alpha)}$ is primitive. A G-arc-transitive graph is (G, 2)-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is a 2-transitive permutation group.

The first result of this paper characterises the action of a vertex-transitive normal subgroup of a group G which acts on a graph s-arc-transitively.

Theorem 1.1. Let $\Gamma = (V, E)$ be a connected (G, s)-transitive graph where $s \ge 2$, and let N be a normal subgroup of G which is transitive on V. Then either N is regular on V, or at least one of the following holds, where $\{\alpha, \beta\}$ is an edge and p is a prime.

- (i) Γ is (N, s)-transitive;
- (ii) Γ is (G, 5)-transitive and (N, 4)-transitive;
- (iii) Γ is (G, 3)-transitive and (N, 2)-transitive;
- (iv) Γ is (G,3)-transitive and N-locally primitive of valency p^f , $G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(p^f)$, and the number of $N_{\alpha\beta}^{\Gamma(\alpha)}$ -orbits on $\Gamma(\alpha) \setminus \{\beta\}$ divides $gcd(p^f - 1, f)^2$;
- (v) Γ is (G, 2)-transitive and N-locally primitive of valency 28, $G_{\alpha} = (G_{\alpha}^{[1]} \times \mathrm{PSL}_2(8)).\mathbb{Z}_3$, and $N_{\alpha} = N_{\alpha}^{[1]} \times \mathrm{PSL}_2(8)$, where $G_{\alpha}^{[1]} \trianglelefteq \mathbb{Z}_9:\mathbb{Z}_6$ and $N_{\alpha}^{[1]} \trianglelefteq \mathrm{D}_{18}$;
- (vi) Γ is (G, 2)-transitive of valency p^f , $G_{\alpha}^{\Gamma(\alpha)}$ is affine, $G_{\alpha} = \mathbf{O}_p(N_{\alpha}): G_{\alpha\beta}$, $\mathbf{O}_p(N_{\alpha}) = \mathbf{O}_p(G_{\alpha}) \cong \mathbb{Z}_p^f$, and either
 - (a) $N_{\alpha\beta} \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_m$, and $N_{\alpha}^{[1]} \cong \mathbb{Z}_{\ell}$, where $\ell \mid m, m \mid (p^d 1)$ and $d \mid f$, or
 - (b) Γ is N-locally primitive, and Lemma 5.4(iv) is satisfied.

The theorem has the following simpler version.

Corollary 1.2. Let Γ be a connected (G, 2)-arc-transitive graph, and let N be a vertextransitive normal subgroup of G. Then at least one of the following holds: Download English Version:

https://daneshyari.com/en/article/4584416

Download Persian Version:

https://daneshyari.com/article/4584416

Daneshyari.com