

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Finite generation of Lie algebras associated with associative algebras $\stackrel{\ensuremath{\not\propto}}{\sim}$

ALGEBRA

Adel Alahmadi^a, Hamed Alsulami^a, S.K. Jain^{a,b}, Efim Zelmanov^{a,c,*}

^a Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

^b Department of Mathematics, Ohio University, Athens, USA

^c Department of Mathematics, University of California, San Diego, USA

ARTICLE INFO

Article history: Received 24 April 2014 Available online 6 January 2015 Communicated by Louis Rowen

Keywords: Associative algebra Lie subalgebra Finitely generated

ABSTRACT

Let F be a field of characteristic not 2. An associative F-algebra R gives rise to the commutator Lie algebra $R^{(-)} = (R, [a, b] = ab - ba)$. If the algebra R is equipped with an involution $*: R \to R$ then the space of the skew-symmetric elements $K = \{a \in R \mid a^* = -a\}$ is a Lie subalgebra of $R^{(-)}$. In this paper we find sufficient conditions for the Lie algebras [R, R] and [K, K] to be finitely generated.

© 2014 Published by Elsevier Inc.

1. Introduction

Let F be a field of characteristic not 2. An associative F-algebra R gives rise to the commutator Lie algebra $R^{(-)} = (R, [a, b] = ab - ba)$ and the Jordan algebra $R^{(+)} = (R, a \circ b = \frac{1}{2}(ab + ba))$. If the algebra R is equipped with an involution $* : R \to R$ then the space of skew-symmetric elements $K = \{a \in R \mid a^* = -a\}$ is a Lie subalgebra of

 $^{^{\}pm}$ Author contributions: A.A., H.A., S.K.J., E.Z. designed research; performed research and wrote the paper. The authors declare no conflict of interest.

 $[\]ast\,$ Corresponding author at: Department of Mathematics, University of California, San Diego, USA.

E-mail addresses: analahmadi@kau.edu.sa (A. Alahmadi), hhaalsalmi@kau.edu.sa (H. Alsulami), jain@ohio.edu (S.K. Jain), ezelmano@math.ucsd.edu (E. Zelmanov).

 $R^{(-)}$, the space of symmetric elements $H = \{a \in R \mid a^* = a\}$ is a Jordan subalgebra of $R^{(+)}$. Following the result of J.M. Osborn (see [4]) on finite generation of the Jordan algebras $R^{(+)}$, H. I. Herstein [4] raised the question about the finite generation of Lie algebras associated with R. In this paper we find sufficient conditions for the Lie algebras $[R^{(-)}, R^{(-)}], [K, K]$ to be finitely generated.

Theorem 1. Let R be a finitely generated associative F-algebra with an idempotent e such that ReR = R(1-e)R = R. Then the Lie algebra [R, R] is finitely generated.

The following example shows that the idempotent condition can not be dropped.

Example 1. The algebra $R = \begin{pmatrix} F[x] & F[x] \\ 0 & F[x] \end{pmatrix}$ of triangular 2×2 matrices over the polynomial algebra F[x] is finitely generated. However the Lie algebra $[R, R] = \begin{pmatrix} 0 & F[x] \\ 0 & 0 \end{pmatrix}$ is not.

Theorem 2. Let R be a finitely generated associative F-algebra with an involution $*: R \to R$. Suppose that R contains an idempotent e such that $ee^* = e^*e = 0$ and $ReR = R(1 - e - e^*)R = R$. Then the Lie algebra [K, K] is finitely generated.

The following example shows that the condition on the idempotent cannot be relaxed.

Example 2. Consider the associative commutative algebra $A = F[x, y]/id(x^2)$ with the automorphism φ of order 2: $\varphi(x) = -x$, $\varphi(y) = y$. The algebra $R = M_2(A)$ of 2×2 matrices over A has an involution $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} d^{\varphi} & b^{\varphi} \\ c^{\varphi} & a^{\varphi} \end{pmatrix}$. We have $[K, K] \leq xM_2(F[y])$, $dim_F[K, K] = \infty$, which implies that algebra [K, K] is not finitely generated.

W.E. Baxter [2] showed that if R is a simple F-algebra, which is not ≤ 16 dimensional over its center Z then the Lie algebra $[K, K]/[K, K] \cap Z$ is simple.

Theorem 3. Let R be a simple finitely generated F-algebra with an involution $* : R \to R$. Suppose that R contains an idempotent e such that $ee^* = e^*e = 0$. Then the Lie algebra $[K, K]/[K, K] \cap Z$ is finitely generated.

2. Finite generation of Lie algebras [R, R]

Consider the Peirce decomposition R = eRe + eR(1-e) + (1-e)Re + (1-e)R(1-e). The components eR(1-e), (1-e)Re lie in [R, R] since eR(1-e) = [e, eR(1-e)], (1-e)Re = [e, (1-e)Re].

Lemma 1. The Lie algebra [R, R] is generated by eR(1-e) + (1-e)Re.

Proof. We only need to show that

$$[eRe, eRe] + [(1-e)R(1-e), (1-e)R(1-e)] \subseteq \text{Lie} \langle eR(1-e), (1-e)Re \rangle.$$

Download English Version:

https://daneshyari.com/en/article/4584457

Download Persian Version:

https://daneshyari.com/article/4584457

Daneshyari.com