Journal of Algebra 426 (2015) 188-210

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The Grothendieck group of non-commutative non-noetherian analogues of \mathbb{P}^1 and regular algebras of global dimension two

ALGEBRA

Gautam Sisodia, S. Paul Smith*

Department of Mathematics, Box 354350, Univ. Washington, Seattle, WA 98195, United States

ARTICLE INFO

Article history: Received 6 March 2014 Available online 9 January 2015 Communicated by Louis Rowen

MSC: 16W50 16E65 19A99

Keywords: Regular algebras Graded rings Global dimension Grothendieck group

АВЅТ КАСТ

Let V be a finite-dimensional positively-graded vector space. Let $b \in V \otimes V$ be a homogeneous element whose rank is $\dim(V)$. Let A = TV/(b), the quotient of the tensor algebra TV modulo the 2-sided ideal generated by b. Let gr(A) be the category of finitely presented graded left A-modules and $\mathsf{fdim}(A)$ its full subcategory of finite dimensional modules. Let $\operatorname{qgr}(A)$ be the quotient category $\operatorname{gr}(A)/\operatorname{fdim}(A)$. We compute the Grothendieck group $K_0(qgr(A))$. In particular, if the reciprocal of the Hilbert series of A, which is a polynomial, is irreducible, then $K_0(\operatorname{qgr}(A)) \cong \mathbb{Z}[\theta] \subset \mathbb{R}$ as ordered abelian groups where θ is the smallest positive real root of that polynomial. When $\dim_k(V) = 2$, qgr(A) is equivalent to the category of coherent sheaves on the projective line, \mathbb{P}^1 , or a stacky \mathbb{P}^1 if V is not concentrated in degree 1. If $\dim_k(V) \geq 3$, results of Piontkovski and Minamoto suggest that qgr(A) behaves as if it is the category of "coherent" sheaves" on a non-commutative, non-noetherian analogue of \mathbb{P}^1 .

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: gautas@math.washington.edu (G. Sisodia), smith@math.washington.edu (S.P. Smith).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2014.11.024 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2014.11.024 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2014.11.024 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2014.11.024$

1. Introduction

1.1. Let k be a field. Let A = TV/(b) where V is a finite-dimensional positivelygraded k-vector space and $b \in V \otimes V$ a homogeneous element of rank dim(V). Zhang [16] showed that up to equivalence the category gr(A) depends only on V as a graded vector space, not on b.

This paper is motivated by non-commutative algebraic geometry. As we explain in Section 1.3, results of Piontkovski and Minamoto suggest that the category qgr(A) behaves as if it is the category of "coherent sheaves" on a non-commutative, non-noetherian if $\dim_k(V) \geq 3$, analogue of the projective line, \mathbb{P}^1 . With this perspective we are computing the Grothendieck groups of "coherent sheaves" on these non-commutative analogues of \mathbb{P}^1 .

The description of $K_0(qgr(A))$ as an *ordered* abelian group says that $\alpha \in \mathbb{Z}[\theta] \cong K_0(qgr(A))$ is equal to $[\mathcal{F}]$ for some $\mathcal{F} \in qgr(A)$ if and only if $\alpha \geq 0$.

The result reminds us of the fact that the K_0 of an irrational rotation algebra \mathcal{A}_{θ} is isomorphic to $\mathbb{Z}[\theta] \subseteq \mathbb{R}_{\geq 0}$ as an ordered abelian group [11,13]. We do not know any connection between qgr(A) and \mathcal{A}_{θ} .

1.2. The case $\dim_k(V) = 2$

When $V = kx_0 \oplus kx_1$ with $\deg(x_0) = \deg(x_1) = 1$ and $b = x_0x_1 - x_1x_0$, A is the polynomial ring $k[x_0, x_1]$ and the category qgr(A) of finitely generated graded A-modules modulo the full subcategory of finite dimensional graded A-modules is equivalent to the category $coh(\mathbb{P}^1)$ of coherent sheaves on \mathbb{P}^1 . If $\deg(x_0) = 1$ and $\deg(x_1) = m > 1$ and $b = x_0x_1 - x_1x_0$, then qgr(A) is equivalent to $coh[\mathbb{P}^1/\mathbb{Z}_m]$, the coherent sheaves on the stacky \mathbb{P}^1 with a single stacky point isomorphic to $B\mathbb{Z}_m$. The K_0 of this stack, and more general toric DM stacks, is computed in [14].

1.3. In [12], Piontkovski shows that A = TV/(b) behaves like a homogeneous coordinate ring of a non-commutative (non-noetherian if $n \geq 3$) analogue of the projective line. He proves that A is graded coherent and hence that the category qgr(A) of finitely presented graded A-modules modulo the full subcategory of finite dimensional graded A-modules is abelian category. He shows that qgr(A) is like $coh(\mathbb{P}^1)$ in so far as it has cohomological dimension 1, Ext groups have finite dimension, and satisfies Serre duality. Explicitly, if $\mathcal{F}, \mathcal{G} \in qgr(A)$, then $\operatorname{Ext}^2_{qgr(A)}(\mathcal{F}, \mathcal{G}) = 0$, $\dim_k \operatorname{Ext}^*_{qgr(A)}(\mathcal{F}, \mathcal{G}) < \infty$, and $\operatorname{Hom}_{qgr(A)}(\mathcal{F}, \mathcal{G}) \cong \operatorname{Ext}^1_{qgr(A)}(\mathcal{G}, \mathcal{F}(-n-1))^*$.

In [8], Minamoto gives additional evidence that qgr(A) is like $coh(\mathbb{P}^1)$ by proving an analogue of the well-known equivalence, $\mathsf{D}^b(\mathsf{Qcoh}(\mathbb{P}^1_k)) \equiv \mathsf{D}^b(kQ_2)$, of bounded derived categories where kQ_2 is the path algebra of the quiver with two vertices and 2 arrows from the first vertex to the second. Minamoto shows that $\mathsf{D}^b(\mathsf{Qcoh}(A)) \equiv \mathsf{D}^b(kQ_{n+1})$ where Q_{n+1} is the path algebra of the quiver with two vertices and n+1 arrows from the first vertex to the second.

Download English Version:

https://daneshyari.com/en/article/4584461

Download Persian Version:

https://daneshyari.com/article/4584461

Daneshyari.com