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Introduction

In [15,17,18] R. Exel initiated a successful method to study C*-algebras, which is based
on new concepts, namely, those of a partial action, the corresponding crossed product
and a partial representation, as well as on the interaction between them. Relevant classes
of C*-algebras have been shown to have the structure of a non-trivial crossed product by
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a partial action, permitting one to investigate their internal structure, representations
and K-theory (see [14,16,20,33,1]).

The first algebraic results on the above mentioned notions were established in [18,7,35,
25,6], which together with the development of the partial Galois theory in [10] stimulated
an intensive algebraic activity on partial actions, corresponding crossed products and
partial representations (see the surveys [5] and [22]). In particular, applications were
obtained to graded algebras in [6] and [8], to Hecke algebras in [19] and to Leavitt path
algebras in [23].

A purely ring theoretic version of the general notion of a twisted partial group action,
initially introduced in the context of C*-algebras in [17], was given in [8]. It allowed one
to show that any group graded algebra, satisfying some reasonably mild restrictions, is
stably isomorphic (in a certain sense) to a crossed product by a twisted partial action,
establishing thus an algebraic counterpart of a result from [17]. The concept involves a
general twisting which satisfies the 2-cocycle identity in some restricted sense, and one
naturally wonders what kind of cohomology theory would fit this. It is complicated to
give such a theory which would embrace the full generality of [8], since the twisting takes
its values in multiplier algebras of products of some ideals indexed by group elements.
Nevertheless, imposing a reasonable restriction on the partial action, namely, that it
is unital, makes it possible to define partial cohomology. Actually, this restriction is
assumed in almost all algebraic papers around partial actions, because it provides an
appropriate technical framework.

One feels more confident in developing such a cohomology theory if one shows that
it matches some other concepts in a way how the usual group cohomology does. In
particular, the Schur multiplier of a group G over the complex numbers C is isomorphic
to H?(G,C*) with trivial action of G on C*. Thus a theory of partial projective group
representations could be a testing field for our cohomology. Such a theory was developed
in [11-13], in particular the structure of the partial Schur multiplier was explored. Further
results on the latter topic were obtained in [31] and [32].

A twisted partial action of a group G on a commutative ring A falls into two parts:
a partial action € of G on A and its twisting. With an additional assumption that 6
is unital (which means that the domains involved in 6 are generated by central idem-
potents), one can derive the concept of a partial 2-cocycle (the twisting) whose values
belong to groups of invertible elements of appropriate ideals of A. The concept of a
partial 2-coboundary then follows from that of an equivalence of twisted partial actions
introduced in [9]. Replacing A by a commutative multiplicative monoid, one comes to the
definition of the second cohomology group H?(G, A). Thus instead of a usual G-module
we deal with a partial G-module, which is a commutative monoid A with a unital partial
action 6 of G on A. The groups H"(G, A) with arbitrary n are defined in a similar way
(see Section 1). Replacing A by an appropriate submonoid one may actually assume that
A is inverse (see Remark 3.14). Next one asks how to obtain these groups using, say,
projective resolutions. It turns out that the category of partial G-modules is not abelian
since some sets of morphisms may be empty. Fortunately, our cohomology can be related
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