Journal of Algebra 427 (2015) 264-294

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Large 2-groups of automorphisms of algebraic curves over a field of characteristic $2^{\,\not\approx}$

ALGEBRA

Massimo Giulietti^{a,*}, Gábor Korchmáros^b

 ^a Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1-06123 Perugia, Italy
^b Dipartimento di Matematica, Università della Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy

ARTICLE INFO

Article history: Received 1 May 2014 Available online 15 January 2015 Communicated by Michel Broué

MSC: 14H37

Keywords: Algebraic curves Positive characteristic Automorphism groups

ABSTRACT

Let S be a 2-subgroup of the K-automorphism group $\operatorname{Aut}(\mathcal{X})$ of an algebraic curve \mathcal{X} of genus $\mathfrak{g}(\mathcal{X})$ defined over an algebraically closed field K of characteristic 2. It is known that S may be quite large compared to the classical Hurwitz bound $84(\mathfrak{g}(\mathcal{X})-1)$. However, if S fixes no point, then the size of S is smaller than or equal to $4(\mathfrak{g}(\mathcal{X})-1)$. In this paper, we investigate algebraic curves \mathcal{X} with a 2-subgroup S of $\operatorname{Aut}(\mathcal{X})$ having the following properties:

(I) $|S| \ge 8$ and $|S| > 2(\mathfrak{g}(\mathcal{X}) - 1)$,

(II) S fixes no point on \mathcal{X} .

Theorem 1.2 shows that \mathcal{X} is a general curve and that either $|S| = 4(\mathfrak{g}(\mathcal{X}) - 1)$, or $|S| = 2\mathfrak{g}(\mathcal{X}) + 2$, or, for every involution $u \in Z(S)$, the quotient curve $\mathcal{X}/\langle u \rangle$ inherits the above properties, that is, it has genus ≥ 2 , and its automorphism group $S/\langle u \rangle$ still has properties (I) and (II). In the first two cases, S is completely determined. We also give examples illustrating our results. In particular, for every $\mathfrak{g} = 2^h + 1 \geq 9$, we exhibit a (general bielliptic) curve \mathcal{X} of genus \mathfrak{g} whose

* Corresponding author.

http://dx.doi.org/10.1016/j.jalgebra.2014.12.019 0021-8693/© 2014 Elsevier Inc. All rights reserved.

 $^{^{*}}$ Research supported by the Italian Ministry MIUR, PRIN project 2012XZE22K Strutture Geometriche, Combinatoria e loro Applicazioni, and by INdAM.

E-mail addresses: giuliet@dmi.unipg.it (M. Giulietti), gabor.korchmaros@unibas.it (G. Korchmáros).

K-automorphism group has a dihedral 2-subgroup S of order $4(\mathfrak{g}-1)$ that fixes no point in \mathcal{X} .

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper, \mathbb{K} is an algebraically closed field of characteristic 2, \mathcal{X} is a (projective, non-singular, geometrically irreducible, algebraic) curve of genus $\mathfrak{g} \geq 2$, $\operatorname{Aut}(\mathcal{X})$ is the \mathbb{K} -automorphism group of \mathcal{X} , and S is a (non-trivial) subgroup of $\operatorname{Aut}(\mathcal{X})$ whose order is a power of 2.

From previous work of Nakajima [13], the size of S is related to the 2-rank γ of \mathcal{X} which is defined to be the rank of the (elementary abelian) group of the 2-torsion points in the Jacobian variety of \mathcal{X} ; see [8, Section 6.7]. It is known that $\gamma \leq \mathfrak{g}$. If equality holds then \mathcal{X} is a general curve, see [8, Theorem 6.96] and [3]. Nakajima [13, Theorem 1] showed that $|S| \leq 4(\gamma - 1)$ for $\gamma > 1$, whereas $|S| \leq 4(\mathfrak{g} - 1)$ for $\gamma = 1$. Moreover, [7, Theorem 3.4] states that if $\gamma = 0$, then S has a unique fixed point on \mathcal{X} , see also [8, Theorem 11.333]. In the latter case, $|S| \leq 8\mathfrak{g}^2$ by an earlier result of Stichtenoth [17] who also pointed out that this bound is attained by the non-singular model \mathcal{X} of the hyperelliptic curve of genus 2^{k-1} and equation $Y^2 + Y + X^{2^{k+1}} = 0$.

The above results have given a motivation to investigate the possibilities for \mathcal{X} , \mathfrak{g} and S when either |S| is close to $8\mathfrak{g}^2$ (and S fixes a point of \mathcal{X}), or |S| is close to $4(\mathfrak{g}-1)$ but S fixes no point of \mathcal{X} .

The first possibilities have recently been investigated by Lehr, Matignon and Rocher, see [11,12,15,16]. In [11], it is shown that $|S| \ge 4\mathfrak{g}^2$ only occurs when \mathcal{X} is the non-singular model of the Artin–Schreier curve of equation $Y^q + Y + f(X) = 0$ with f(X) = XP(X) + cX where P(X) is an additive polynomial of $\mathbb{K}[X]$ and q is a power of 2.

To investigate the second possibility the hypotheses below are assumed:

- (I) $|S| \ge 8$ and $|S| > 2(\mathfrak{g} 1)$,
- (II) S fixes no point on \mathcal{X} .

Before stating our results on S we point out the prominent role of central involutions in this context. Let u be a central involution in S, that is an involution $u \in Z(S)$, and consider the associated quotient curve $\bar{\mathcal{X}} = \mathcal{X}/U$ where $U = \langle u \rangle$. The factor group $\bar{S} = S/U$ has order $\frac{1}{2}|S|$ and it is a K-automorphism group of $\bar{\mathcal{X}}$. Also, $\mathfrak{g} - 1 \ge 2(\bar{\mathfrak{g}} - 1)$ where $\bar{\mathfrak{g}}$ is the genus of $\bar{\mathcal{X}}$. Therefore, either

- (A) $\bar{\mathfrak{g}} \leq 1$; or
- (B) $\bar{\mathfrak{g}} = 2$ and $|\bar{S}| = 4$; or
- (C) $\bar{\mathfrak{g}} \geq 2$, and hypothesis (I) is inherited by \bar{S} , viewed as a subgroup of Aut(\mathcal{X}), but \bar{S} fixes a point on $\bar{\mathcal{X}}$; or

Download English Version:

https://daneshyari.com/en/article/4584511

Download Persian Version:

https://daneshyari.com/article/4584511

Daneshyari.com