

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Minimal characteristic bisets for fusion systems

ALGEBRA

Matthew Gelvin^{a,*}, Sune Precht Reeh^{b,1}

 ^a West Lafayette, IN, USA
^b Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

A R T I C L E I N F O

Article history: Received 19 June 2014 Available online 21 January 2015 Communicated by Michel Broué

MSC: 20D20 20J15 19A22

Keywords: Fusion systems Bisets Finite groups Sylow subgroups

ABSTRACT

We show that every saturated fusion system \mathcal{F} has a unique minimal \mathcal{F} -characteristic biset $\Lambda_{\mathcal{F}}$. We examine the relationship of $\Lambda_{\mathcal{F}}$ with other concepts in *p*-local finite group theory: In the case of a constrained fusion system, the model for the fusion system is the minimal \mathcal{F} -characteristic biset, and more generally, any centric linking system can be identified with the \mathcal{F} -centric part of $\Lambda_{\mathcal{F}}$ as bisets. We explore the grouplike properties of $\Lambda_{\mathcal{F}}$, and conjecture an identification of normalizer subsystems of \mathcal{F} with subbisets of $\Lambda_{\mathcal{F}}$.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

If S is a Sylow p-subgroup of a finite group G, we talk about the fusion system $\mathcal{F}_S(G)$ as an organizational framework for understanding the p-local structure of G. The fusion data is encoded as a category: The objects of $\mathcal{F}_S(G)$ are the subgroups of S, and the morphisms are the maps between subgroups induced by conjugation in G. More generally,

* Corresponding author.

E-mail addresses: mgelvin@gmail.com (M. Gelvin), reeh@mit.edu (S.P. Reeh).

 $^{^1}$ Supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

Puig introduced the notion of an abstract fusion system on S: This is again a category \mathcal{F} with objects the subgroups of S and morphisms certain injective group maps between subgroups (see Section 2).

An abstract fusion system does not necessarily arise from a group in this manner, but we still think of the morphisms in \mathcal{F} as given by the conjugation action of some grouplike object on the subgroups of S. The notion of a *characteristic biset* turns this perspective around, and considers how S acts on the object that does the conjugating.

For $S \in \text{Syl}_p(G)$ and the fusion system $\mathcal{F}_S(G)$ induced by *G*-conjugation on *S*, we can ask how *S* acts on *G* by left and right multiplication. That is, we consider the (S, S)-biset ${}_SG_S$. For any $g \in G$ and any pair $(b, a) \in S \times S$, asking that $b \cdot g = g \cdot a$ is satisfied in the biset ${}_SG_S$, is equivalent to $b = {}^g a$. In other words, fusion data $(b = {}^g a)$ is encoded in the biset structure $(b \cdot g = g \cdot a)$. This justifies calling ${}_SG_S$ a *characteristic biset* for $\mathcal{F}_S(G)$.

Linckelmann and Webb extracted the features of ${}_{S}G_{S}$ that are essential for understanding the fusion system $\mathcal{F}_{S}(G)$, resulting in a notion of characteristic bisets for any abstract fusion system \mathcal{F} . Fix a *p*-group *S*, a fusion system \mathcal{F} on *S*, and an (S, S)-biset Ω . Ω is then a characteristic biset for \mathcal{F} if:

(0) Ω is free both as a left and right S-set.

This means that any $\omega \in \Omega$ has stabilizer $\{(b, a) \in S \times S \mid b \cdot \omega = \omega \cdot a\}$ of the form $(P, \varphi) := \{(\varphi(a), a) \mid a \in P\}$ for P a subgroup of S and $\varphi: P \hookrightarrow S$ some group injection.

Heuristically, this says that ω "conjugates" *a* to $\varphi(a)$.

(1) If $\omega \in \Omega$ has stabilizer (P, φ) , then φ is a morphism of \mathcal{F} .

This means that all the conjugation induced by Ω is in \mathcal{F} .

(2) For subgroups P of S, \mathcal{F} -morphisms $\varphi: P \to S$, and \mathcal{F} -isomorphisms $\eta_1: Q \xrightarrow{\cong} P$, $\eta_2: \varphi P \xrightarrow{\cong} R$, there is an equality of fixed-point set orders: $|\Omega^{(P,\varphi)}| = |\Omega^{(Q,\eta_2\varphi\eta_1)}|$.

This condition generalizes the fact that, if G acts on a set X, then conjugate subgroups of G have fixed-point sets of equal size.

(3) $|\Omega|/|S|$ is prime to p.

This Sylow condition generalizes $S \in Syl_n(G)$.

The connection between a fusion system \mathcal{F} and an associated \mathcal{F} -characteristic biset is very strong:

- If \mathcal{F} is *saturated* (i.e., it satisfies the axioms needed to make \mathcal{F} look like the fusion induced by a finite group), then there exists a characteristic biset [3].
- If a characteristic biset for \mathcal{F} exists, then \mathcal{F} is saturated ([11], also see [14] for a *p*-localized version).
- As suggested by Axioms (1) and (2), the characteristic biset determines \mathcal{F} .

Download English Version:

https://daneshyari.com/en/article/4584515

Download Persian Version:

https://daneshyari.com/article/4584515

Daneshyari.com