

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Braid groups of imprimitive complex reflection groups

Ruth Corran a, Eon-Kyung Lee b,*, Sang-Jin Lee c

- ^a The American University of Paris, 147 rue de Grenelle, 75007, France
- ^b Department of Mathematics, Sejong University, Seoul, 143-747, Republic of Korea
- ^c Department of Mathematics, Konkuk University, Seoul, 143-701, Republic of Korea

ARTICLE INFO

Article history: Received 30 October 2014 Available online 23 January 2015 Communicated by Michel Broué

MSC:

primary 20F55, 20F36 secondary 20F05, 20F10, 03G10

Keywords:
Complex reflection group
Braid group
Garside group
Periodic element
Translation number

ABSTRACT

We obtain new presentations for the imprimitive complex reflection groups of type (de,e,r) and their braid groups B(de,e,r) for $d,r\geq 2$. Diagrams for these presentations are proposed. The presentations have much in common with Coxeter presentations of real reflection groups. They are positive and homogeneous, and give rise to quasi-Garside structures. Diagram automorphisms correspond to group automorphisms. The new presentation shows how the braid group B(de,e,r) is a semidirect product of the braid group of affine type \mathbf{A}_{r-1} and an infinite cyclic group. Elements of B(de,e,r) are visualised as geometric braids on r+1 strings whose first string is pure and whose winding number is a multiple of e. We classify periodic elements, and show that the roots are unique up to conjugacy and that the braid group B(de,e,r) is strongly translation discrete.

© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author. E-mail addresses: Ruth.Corran@AUP.fr (R. Corran), eonkyung@sejong.ac.kr (E.-K. Lee), sangjin@konkuk.ac.kr (S.-J. Lee).

Contents

1.	Introd	luction	388
	1.1.	Reflection groups and braid groups	388
	1.2.	Outline and main results	389
2.	Prelin	ninary material	390
	2.1.	The free group F_2 and the braid group of type $\mathbf{I}_2(e)$	390
	2.2.	The braid group $B(e, e, r)$	391
	2.3.	Braid groups of types \mathbf{A} , \mathbf{B} and $\widetilde{\mathbf{A}}$ and geometric braids	393
3.	New 1	presentations for the braid groups $B(\infty, \infty, r)$ and $B(de, e, r)$	396
	3.1.		396
	3.2.	New presentation of $B(de, e, r)$	399
	3.3.	Garside structures on $B(\infty, \infty, r)$ and $B(de, e, r)$	405
4.	Geometric interpretation and applications		411
	4.1.	Interpretation as geometric braids on $r+1$ strings	411
	4.2.		415
	4.3.	Discreteness of translation numbers	415
	4.4.	Classification of periodic elements	417
5.	Ã-typ	be presentation for $B(de,e,r)$	420
Ackno	owledg	ments	423
Refere	ences		424

1. Introduction

1.1. Reflection groups and braid groups

A complex reflection group G on a finite dimensional complex vector space V is a subgroup of GL(V) generated by complex reflections — nontrivial elements that fix a complex hyperplane in V pointwise. Finite (irreducible) complex reflection groups were classified by Shephard and Todd [48]:

- (i) a general infinite family G(de, e, r) for positive integral parameters d, e, r;
- (ii) thirty-four exceptions, labelled G_4, G_5, \ldots, G_{37} .

For the presentations of the above groups, see [13,14].

Finite complex reflection groups are divided into two main classes: primitive and imprimitive. The general infinite family G(de, e, r) is imprimitive except for G(1, 1, r) and G(de, e, 1). (G(1, 1, r) is the symmetric group of degree r and G(de, e, 1) is the cyclic group of order d.) The exceptional groups G_4, G_5, \ldots, G_{37} are primitive.

The complex reflection group of type (de, e, r) is defined as

$$G(de, e, r) = \left\{ \begin{array}{l} r \times r \text{ monomial matrices} \\ (x_{ij}) \text{ over } \{0\} \cup \mu_{de} \end{array} \middle| \prod_{x_{ij} \neq 0} x_{ij}^d = 1 \right\},$$

Download English Version:

https://daneshyari.com/en/article/4584517

Download Persian Version:

https://daneshyari.com/article/4584517

<u>Daneshyari.com</u>