
The Journal of Systems and Software 86 (2013) 1663– 1678

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

A survey study of critical success factors in agile software projects in former
Yugoslavia IT companies

Dragan Stankovica,∗, Vesna Nikolicb, Miodrag Djordjevicc, Dac-Buu Caod

a Faculty of Technical Sciences, University of Pristina, Kosovska Mitrovica, Serbia
b Faculty of Occupational Safety, University of Nis, Nis, Serbia
c Faculty of Sciences and Mathematics, University of Nis, Nis, Serbia
d Siemens PLM Software, CA, USA

a r t i c l e i n f o

Article history:
Received 2 July 2012
Received in revised form 13 February 2013
Accepted 13 February 2013
Available online 21 February 2013

Keywords:
Software development
Agile methods
Critical success factors

a b s t r a c t

Determining the factors that have an influence on the success of the software development projects
has been the focus of extensive research for more than 30 years. In recent years agile methodol-
ogy of software development has become the dominant one for all kinds of software development
projects. In this paper we present the results of empirical study for determining critical factors that
influence the success of agile software projects which we conducted among senior developers and
project managers from IT companies located in the former Yugoslavia countries within South East-
ern Europe (SEE) region. This study is inspired by the similar study conducted 5 years ago (Chow
and Cao, 2008). With this study we were not able to confirm the model developed in the previous
study. Moreover it disconfirmed not only part of the factors, but very much questioned the whole
scheme. However, we were able to shed additional light regarding agile software development in former
Yugoslavia countries from SEE region as a reference region for investigating outsourced projects done in
agile way.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A process of software development has been the focus of
interest of many managers, engineers and researchers due to a
large percentage of failures in the software industry. Failures range
from inability to provide software solution that fits the require-
ments on time, to providing solutions that are a maintenance
nightmare or in the worst case inability to provide any solution
at all (abandoned software projects). One of the main problems
that make software development so special and which is causing
the above mentioned difficulties is that during the project both
technology and the business environment change (Williams and
Cockburn, 2003). That change is, due to technology advancement
nowadays, even more dynamic than at the time Agile movement
started its development; it is causing customers to have difficulties
not only to state their needs in the beginning of the project but
even to have a basic idea of what they need at that time and to
form requirements only after a few iterations of the demo product.
The process of forming requirements includes changes as well.
The result of this situation is the development of a variety of

∗ Corresponding author. Tel.: +381 63 1089310.
E-mail address: dragan.stankovic@pr.ac.rs (D. Stankovic).

methodologies and practices that embrace changes like SCRUM,
Extreme Programming, Lean Software Development, Kanban,
Crystal, Feature Driven Development, etc.

Over the years agile methods have proven to overcome many
of the problems stated above and have become dominant in the
software industry. The agile approach is basically driven by self-
organizing teams that have the power to coordinate their work
on their own. This increases productivity, enables employees to
learn, innovate, and finally makes them happy with what they
do (Smite et al., 2010a). In the traditional plan-driven (waterfall)
software development processes, work is coordinated by man-
agers and there is a clear separation of roles (Moe et al., 2010).
Similarly, in larger organizations there is a tendency of organiz-
ing people around component teams – grouping people in the
way that they have the influence over the small part of the prod-
uct thus giving the teams less control and losing the ability of
close collaboration. Introducing new features in the organization
of that kind requires synchronization of many different compo-
nent teams (Larman, 2011). In the agile approach, a self-organizing
team decides how work is coordinated and has the complete con-
trol over development process and introduction of new features.
However, many organizations, and especially large organizations,
still base their software development around plan driven or com-
ponent teams. The transition of such teams to agile teams and
how to overcome difficulties that occur during that process has

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.02.027

dx.doi.org/10.1016/j.jss.2013.02.027
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:dragan.stankovic@pr.ac.rs
dx.doi.org/10.1016/j.jss.2013.02.027

1664 D. Stankovic et al. / The Journal of Systems and Software 86 (2013) 1663– 1678

been the subject of many case studies (Moe et al., 2010; Ogle
et al., 2011). All of them agree that this kind of transition is a
hard process. That process often has dead ends in means of try-
ing and abandoning various software development practices that
do not work for the current team. Sometimes it is filled with
team members’ frustration, skepticism, denying, but regardless of
everything mentioned, achieved benefits ramify the cost of transi-
tion.

As Smite et al. (2010a) comprehend there is a growing need for
companies to explore global sourcing leading to distributed soft-
ware projects with geographically, temporally and socio-culturally
dispersed teams facing additional challenges when trying to suc-
cessfully implement agile values and principles. The research in
Smite et al. (2010b) has shown that it is possible to successfully
apply agile principles in distributed environment although these
two can be considered as opposite extremes.

As stated by many authors (Smite et al., 2010b; Hansson
et al., 2006) agile development practice has always been ahead of
research. Academic research has mostly been involved with try-
ing to understand what is going on and exploring in a scientific
way techniques and procedures which were already established
and used by the community of software developers and agile prac-
titioners. One such example is work by Hansson et al. (2006) where
they investigated the differences between industrial practices and
agile development practices in several companies. They have con-
cluded that the actual industrial practices used by companies were
dependent on companies’ characteristics and projects on which
they worked on. Another study (Chow and Cao, 2008) among
agile professionals has shown that only 10 out of 48 hypothe-
ses were critical to success of agile projects. Based on the survey
from that study in the work presented here we have tried to
identify critical success factors in agile software projects on the
sample of companies operating in SEE region (region sometimes
referred as Western Balkans). Similarly to the authors of previ-
ous study we have used statistical methods to evaluate responses
we received from our interviewees and verify obtained model. It
can be debated whether model driven estimation based on statis-
tics such as the one used in our study is the proper method
to use when it comes to software engineering. For example, a
study by Johansson (2000) suggests that the use of statistics is
perhaps inappropriate in the field of software engineering due
to all the difficulties associated with interpreting the results and
many existing uncertainty factors. Similarly, Jørgensen and Boehm
(2009) suggest that the use of both formal methods and expert
judgment might be best. They also conclude that future efforts
should be headed toward judgment based methods. Neverthe-
less, we have decided to use the same method as in previous
study mainly to make more accurate comparison with the results
of previous study. Since our study was not able to confirm the
model developed in the previous study, in conclusions of this
paper as part of our future research efforts we announce the use
of AHP (Analytic Hierarchy Process) in order to create a better
model.

Our survey was conducted among developers from over 20
companies. The general characteristic of our interviewees is that
they mostly work in distributed environments meaning that they
face additional challenges mentioned in the section above. We
were interested in whether these specific environmental factors
will influence the conclusions made by Chow and Cao (2008). In an
article by Freudenberg and Sharp (2010) which was created as a
result of panel discussion where practitioners identified the list of
issues related to agile software development they would like to be
researched, three of the top 10 items focus on distributed teams.
This survey will hopefully show the difference to the previous
study which can be attributed to both demographic and distributed
teams effect.

2. Background (intro to agile methods)

Our survey showed that the most popular agile methods used
among former Yugoslavia agile teams are: XP, Scrum, and Feature
Driven Development. We have also received responses in which
some hybrid methods were used. Interestingly, there were no
reports on use of Lean or Kanban which are becoming increasingly
popular in IT industry in recent years (Anderson, 2010; Kniberg
and Skarin, 2010). The reason for this could be the delay in imple-
menting the latest practices that exist in developers’ communities
from the more developed regions (for example in Silicon Valley).
The possible cause of that delay could be attributed to the absence
of modern trainings lead by qualified and experienced profession-
als that are available in more developed regions, or the fact that
cutting edge projects are less likely to be outsourced to overseas
teams. Nevertheless the most popular agile practices are there and
were considered in our study.

Many agile methodologies share a lot of practices and have com-
mon characteristics and approach to projects, but each is unique in
its own strategy of their implementation. In the following sections
we will briefly describe each of the popular methods which we
identified as being used by surveyed companies.

2.1. Extreme programming

Extreme Programming (XP) is one of several popular agile pro-
cesses. It was originally described by Kent Beck (one of the authors
of Agile manifesto) and has been proven to be very successful at
many companies of all different sizes and within various indus-
tries. The focus of this approach is on customer satisfaction so
it empowers developers to be able to respond to changing cus-
tomer requirements and to deliver high-quality software quickly
and continuously. Working software is delivered to customer typ-
ically in intervals of 1–3 weeks. XP improves software projects
by embracing communication, simplicity, feedback, respect, and
courage. The original XP recipe contained 12 rules: Planning
Game, Small Releases, Customer Acceptance Tests, Simple Design,
Pair Programming, Test-Driven Development, Refactoring, Contin-
uous Integration, Collective Code Ownership, Coding Standards,
Metaphor, and Sustainable Pace.

Like in every agile process these rules are not written in stone
and over time certain rules were modified, new rules appeared and
for example in Shore and Warden (2008) authors make distinction
between two versions of XP described by Beck (1999) and Beck and
Andres (2004) and even introduce their own approach to XP which
emerged from their practical experience.

2.2. Feature driven development (FDD)

FDD was introduced by Jeff De Luca in 1997 and later as a result
of collaboration with Peter Coad first incarnations of FDD appeared
(Coad et al., 1999; Palmer and Felsing, 2002). FDD is a model-driven,
short-iteration process. It begins with establishing an overall model
shape and identification of features. Features are then grouped in
work packages. One work package can be finished within a single
iteration and it actually represents working software with which
customer can play with.

FDD designs the rest of the development process around feature
delivery using the following eight practices:

1. Domain object modeling
2. Developing by feature
3. Component/class ownership
4. Feature teams
5. Inspections

Download English Version:

https://daneshyari.com/en/article/458454

Download Persian Version:

https://daneshyari.com/article/458454

Daneshyari.com

https://daneshyari.com/en/article/458454
https://daneshyari.com/article/458454
https://daneshyari.com

