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Let (R, m) be a Noetherian local ring and M a finitely gen-
erated R-module. Following I.G. Macdonald [8], the set of 
all attached primes of the Artinian local cohomology module 
Hi

m(M) is denoted by AttR(Hi
m(M)). In [13, Theorem 3.7], 

R.Y. Sharp proved that if R is a quotient of a Gorenstein lo-
cal ring then the shifted localization principle holds true for 
any local cohomology modules Hi

m(M), i.e.

AttRp

(
H

i−dim(R/p)
pRp

(Mp)
)

=
{
qRp

∣∣ q ∈ AttR Hi
m(M), q ⊆ p

}
(1)

for any p ∈ Spec(R). In this paper, we improve Sharp’s result 
as follows: the shifted localization principle holds true if and 
only if R is universally catenary and all its formal fibers are 
Cohen–Macaulay, if and only if the shifted completion princi-
ple

AttR̂
(
Hi

m(M)
)

=
⋃

p∈AttR(Hi
m

(M))

AssR̂(R̂/pR̂) (2)
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holds true for any local cohomology module Hi
m(M). This 

also improves the main result of the paper by T.D.M. Chau 
and the first author [2].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and M a finitely gener-
ated R-module with dimM = d. It is well known that

AssRp
(Mp) = {qRp | q ∈ AssR M, q ⊆ p}

for every prime ideal p of R. For an Artinian R-module A, the set of all attached primes 
AttR A defined by I.G. Macdonald [8] plays an important role, which is similar to the 
role of the set of associated primes AssR M of a finitely generated R-module M . It is well 
known that the local cohomology module Hi

m(M) is Artinian for all i ≥ 0. Therefore, it 
is natural to ask whether the analogous relation

AttRp

(
H

i−dim(R/p)
pRp

(Mp)
)

=
{
qRp

∣∣ q ∈ AttR
(
Hi

m(M)
)
, q ⊆ p

}
(1)

between AttRp
(Hi−dim(R/p)

pRp
(Mp)) and AttR(Hi

m(M)) holds true for every Hi
m(M) and 

every p ∈ Spec(R). If R is a quotient of a Gorenstein local ring, R.Y. Sharp [13, Theo-
rem 3.7] proved that the shifted localization principle (1) holds true (see also [1, 11.3.2]). 
However, it is not the case in general, cf. [1, Example 11.3.14].

Another question is about the relation between the attached primes of Hi
m(M) over R

and that of Hi
m(M) over the m-adic completion R̂ of R. Denote by M̂ the m-adic com-

pletion of M . Then we have the following well-known relations between AssR M and 
AssR̂ M̂

AssR M = {P ∩R | P ∈ AssR̂ M̂} and AssR̂ M̂ =
⋃

p∈AssR M

AssR̂(R̂/pR̂),

cf. [9, Theorem 23.2]. For an Artinian R-module A, we note that A has a natural structure 
as an Artinian R̂-module. Moreover, AttR A = {P ∩R | P ∈ AttR̂ A} (see [1, 8.2.4, 8.2.5]), 
which is in some sense dual to the above first relation between AssR M and AssR̂ M̂ . 
However, the second analogous relation may not hold true even when A = Hi

m(M), i.e. 
in general the shifted completion principle for the local cohomology module Hi

m(M)

AttR̂
(
Hi

m(M)
)

=
⋃

p∈AttR(Hi
m(M))

AssR̂(R̂/pR̂) (2)

is not true, cf. [2, Example 2.3]. Note that if R is a quotient of a Gorenstein local ring,
then (2) holds true for any local cohomology module Hi

m(M), cf. [2, Proposition 2.6].
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