

#### Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

# Derivations of a parametric family of subalgebras of the Weyl algebra



ALGEBRA

### Georgia Benkart<sup>a</sup>, Samuel A. Lopes<sup>b,1</sup>, Matthew Ondrus<sup>c,\*</sup>

 <sup>a</sup> Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706-1388, USA
<sup>b</sup> CMUP, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

<sup>c</sup> Mathematics Department, Weber State University, Ogden, UT 84408, USA

#### A R T I C L E I N F O

Article history: Received 22 June 2014 Available online 27 November 2014 Communicated by J.T. Stafford

MSC: primary 16S32, 16W25 secondary 16E40, 16S36, 17B40

Keywords: Ore extensions Weyl algebras Derivations Hochschild cohomology Witt algebra

#### ABSTRACT

An Ore extension over a polynomial algebra  $\mathbb{F}[x]$  is either a quantum plane, a quantum Weyl algebra, or an infinitedimensional unital associative algebra  $A_h$  generated by elements x, y, which satisfy yx - xy = h, where  $h \in \mathbb{F}[x]$ . When  $h \neq 0$ , the algebra  $A_h$  is subalgebra of the Weyl algebra  $A_1$ and can be viewed as differential operators with polynomial coefficients. This paper determines the derivations of  $A_h$  and the Lie structure of the first Hochschild cohomology group  $HH^1(A_h) = Der_{\mathbb{F}}(A_h)/Inder_{\mathbb{F}}(A_h)$  of outer derivations over an arbitrary field. In characteristic 0, we show that  $HH^{1}(A_{h})$  has a unique maximal nilpotent ideal modulo which  $HH^1(A_h)$  is 0 or a direct sum of simple Lie algebras that are field extensions of the one-variable Witt algebra. In positive characteristic, we obtain decomposition theorems for  $\mathsf{Der}_{\mathbb{F}}(\mathsf{A}_h)$  and  $\mathsf{HH}^1(\mathsf{A}_h)$ and describe the structure of  $HH^1(A_h)$  as a module over the center of  $A_h$ .

© 2014 Elsevier Inc. All rights reserved.

\* Corresponding author.

*E-mail addresses:* benkart@math.wisc.edu (G. Benkart), slopes@fc.up.pt (S.A. Lopes), mattondrus@weber.edu (M. Ondrus).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2014.11.007 \\ 0021-8693/ © 2014 Elsevier Inc. All rights reserved.$ 

 $<sup>^1\,</sup>$  The author was partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT – Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2013.

#### 1. Introduction

We consider a family of infinite-dimensional unital associative algebras  $A_h$  parametrized by a polynomial h in one variable, with the definition given as follows:

**Definition 1.1.** Let  $\mathbb{F}$  be a field, and let  $h \in \mathbb{F}[x]$ . The algebra  $A_h$  is the unital associative algebra over  $\mathbb{F}$  with generators x, y and defining relation yx = xy + h (equivalently, [y, x] = h where [y, x] = yx - xy).

These algebras arose naturally in considering Ore extensions over a polynomial algebra  $\mathbb{F}[x]$ . Many algebras can be realized as iterated Ore extensions, and for that reason, Ore extensions have become a mainstay in associative theory. Recall that an Ore extension  $\mathsf{A} = \mathsf{R}[y, \sigma, \delta]$  is built from a unital associative (not necessarily commutative) algebra  $\mathsf{R}$  over a field  $\mathbb{F}$ , an  $\mathbb{F}$ -algebra endomorphism  $\sigma$  of  $\mathsf{R}$ , and a  $\sigma$ -derivation of  $\mathsf{R}$ , where by a  $\sigma$ -derivation  $\delta$  we mean that  $\delta$  is  $\mathbb{F}$ -linear and  $\delta(rs) = \delta(r)s + \sigma(r)\delta(s)$  holds for all  $r, s \in \mathsf{R}$ . Then  $\mathsf{A} = \mathsf{R}[y, \sigma, \delta]$  is the algebra generated by y over  $\mathsf{R}$  subject to the relation

$$yr = \sigma(r)y + \delta(r)$$
 for all  $r \in \mathsf{R}$ .

Under the assumption that  $R = \mathbb{F}[x]$  and  $\sigma$  is an automorphism of R, the following result holds. (Compare [3] and [1], which have a somewhat different division into cases.)

**Lemma 1.2.** Assume  $A = R[y, \sigma, \delta]$  is an Ore extension with  $R = \mathbb{F}[x]$ , a polynomial algebra over a field  $\mathbb{F}$  of arbitrary characteristic, and  $\sigma$  an automorphism of R. Then A is isomorphic to one of the following:

- (a) a quantum plane;
- (b) a quantum Weyl algebra;
- (c) an algebra  $A_h$  with generators x, y and defining relation yx = xy + h for some polynomial  $h \in \mathbb{F}[x]$ .

The algebras  $A_h$  result from taking  $R = \mathbb{F}[x]$ ,  $\sigma$  to be the identity automorphism, and  $\delta : R \to R$  to be the derivation given by

$$\delta(f) = f'h,\tag{1.3}$$

where f' is the usual derivative of f with respect to x.

Quantum planes and quantum Weyl algebras are examples of generalized Weyl algebras in the sense of [4, 1.1], and as such, have been studied extensively. In [5,6], we determined the center, normal elements, and prime ideals of the algebras  $A_h$ , as well as the automorphisms and their invariants, isomorphisms between two algebras  $A_g$  and  $A_h$ , and the irreducible  $A_h$ -modules over any field  $\mathbb{F}$ . Our aim in this paper is to compute the derivations and first Hochschild cohomology group of the algebras  $A_h$  over an arbitrary field. Download English Version:

## https://daneshyari.com/en/article/4584553

Download Persian Version:

https://daneshyari.com/article/4584553

Daneshyari.com