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value of our statistic.
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1. Introduction

Let Sn be the symmetric group on {1, . . . , n}. Recall that if σ ∈ Sn, 1 ≤ i < j ≤ n

and σ(i) > σ(j), the pair (σ(i), σ(j)) is said to be an inversion for σ ∈ Sn. Let N(σ)
denote the inversion set of σ. Also set D = {(i, j) | 1 ≤ j < i ≤ n}.

Definition 1.1. We say that Y ⊂ Sn is inversion complete if 
⋃

σ∈Y N(σ) = D, and that is 
minimal inversion complete if it is inversion complete and minimal with respect to this 
property.

The following result in extremal combinatorics of permutations has been communi-
cated to us by Fabio Tardella [13], who informed us about a forthcoming joint work with 
M. Queyranne and E. Balandraud.

Theorem 1.1. The maximal cardinality of a minimal inversion complete subset of Sn is 
�n2

4 �.

The enumerative problem dealt with in Theorem 1.1 admits a natural generalization 
to finite reflection groups. Indeed, let Δ be a finite crystallographic irreducible root 
system and W be the corresponding Weyl group. Fix a set of positive roots Δ+ ⊂ Δ. If 
w ∈ W , then permutation inversions are naturally replaced by the subset N(w) of Δ+

defined in (2.1) (cf. [2]). The problem consists in determining the maximal cardinality of 
a subset Y of W such that 

⋃
w∈Y N(w) = Δ+ and minimal with respect to this property. 

Let us denote this number by MC (T ) for a group of type T .
In this perspective we provide a proof of Theorem 1.1 and of the following results.

Theorem 1.2. MC (Bn) =
(
n
2
)

+ 1.

Theorem 1.3. MC (Dn) =
(
n
2
)
.

We also have proofs that

MC (F4) ≥ 6, MC (E6) ≥ 16, MC (E7) ≥ 27, MC (E8) ≥ 36. (1.1)

We conjecture that these bounds are actually the exact values of our statistic. We have 
indeed a computer assisted proof of equality in type F4 (cf. Remark 7.1).

By using the canonical root system (cf. Section 8), our problem further generalizes to 
noncrystallographic types. It is quite easy to prove that MC(I2(m)) = 2; in particular, 
since G2 is I2(6), we have MC (G2) = 2. We can also show that MC (H3) = 5 and that 
MC (H4) ≥ 8. (See Section 8.)

Theorems 1.1, 1.2, 1.3 are proven in two steps. First we exhibit a minimal inversion 
complete set of the desired cardinality, which gives a lower bound for MC(T ). The choice 
of this set is motivated by the theory of abelian ideals of Borel subalgebras. Then we prove 
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