Markov complexity of monomial curves

Hara Charalambous ${ }^{\text {a }}$, Apostolos Thoma ${ }^{\text {b }}$, Marius Vladoiu ${ }^{\text {c,d,*, }}$
${ }^{\text {a }}$ Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
b Department of Mathematics, University of Ioannina, Ioannina 45110, Greece
c Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, Bucharest 010014, Romania
${ }^{\text {d }}$ Simion Stoilow Institute of Mathematics of Romanian Academy, Research group of the project ID-PCE-2011-3-1023, P.O. Box 1-764, Bucharest 014700, Romania

A R T I C L E I N F O

Article history:

Received 20 November 2013
Available online 28 July 2014
Communicated by Seth Sullivant

$M S C$:

14M25
13 P 10
62 H 17
05C90

Keywords:
Toric ideals
Markov basis
Graver basis
Lawrence liftings

A B S T R A C T

Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subset \mathbb{N}^{m}$. We give an algebraic characterization of the universal Markov basis of the toric ideal $I_{\mathcal{A}}$. We show that the Markov complexity of $\mathcal{A}=\left\{n_{1}, n_{2}, n_{3}\right\}$ is equal to 2 if $I_{\mathcal{A}}$ is complete intersection and equal to 3 otherwise, answering a question posed by Santos and Sturmfels. We prove that for any $r \geq 2$ there is a unique minimal Markov basis of $\mathcal{A}^{(r)}$. Moreover, we prove that for any integer l there exist integers n_{1}, n_{2}, n_{3} such that the Graver complexity of \mathcal{A} is greater than l.
© 2014 Elsevier Inc. All rights reserved.

[^0]
Introduction

Let \mathbb{k} be a field, $n, m \in \mathbb{N}, \mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subset \mathbb{N}^{m}$ and $A \in \mathcal{M}_{m \times n}(\mathbb{N})$ be the matrix whose columns are the vectors of \mathcal{A}. We let $\mathcal{L}(\mathcal{A}):=\operatorname{Ker}_{\mathbb{Z}}(A)$ be the corresponding sublattice of \mathbb{Z}^{n} and denote by $I_{\mathcal{A}}$ the corresponding toric ideal of \mathcal{A} in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. We recall that $I_{\mathcal{A}}$ is generated by all binomials of the form $x^{\mathbf{u}}-x^{\mathbf{w}}$ where $\mathbf{u}-\mathbf{w} \in \mathcal{L}(\mathcal{A})$.

A Markov basis of \mathcal{A} is a finite subset \mathcal{M} of $\mathcal{L}(\mathcal{A})$ such that whenever $\mathbf{w}, \mathbf{u} \in \mathbb{N}^{n}$ and $\mathbf{w}-\mathbf{u} \in \mathcal{L}(\mathcal{A})$ (i.e. $A \mathbf{w}=A \mathbf{u}$), there exists a subset $\left\{\mathbf{v}_{i}: i=1, \ldots, s\right\}$ of \mathcal{M} that connects \mathbf{w} to \mathbf{u}. This means that $\left(\mathbf{w}-\sum_{i=1}^{p} \mathbf{v}_{i}\right) \in \mathbb{N}^{n}$ for all $1 \leq p \leq s$ and $\mathbf{w}-\mathbf{u}=\sum_{i=1}^{s} \mathbf{v}_{i}$. A Markov basis \mathcal{M} of \mathcal{A} is minimal if no subset of \mathcal{M} is a Markov basis of \mathcal{A}. For a vector $\mathbf{u} \in \mathcal{L}(\mathcal{A})$ we let $\mathbf{u}^{+}, \mathbf{u}^{-}$be the unique vectors in \mathbb{N}^{n} such that $\mathbf{u}=\mathbf{u}^{+}-\mathbf{u}^{-}$. If \mathcal{M} is a minimal Markov basis of \mathcal{A} then a classical result of Diaconis and Sturmfels states that the set $\left\{x^{\mathbf{u}^{+}}-x^{\mathbf{u}^{-}}: \mathbf{u} \in \mathcal{M}\right\}$ is a minimal generating set of $I_{\mathcal{A}}$, see [6, Theorem 3.1]. The universal Markov basis of \mathcal{A}, which we denote by $\mathcal{M}(\mathcal{A})$, is the union of all minimal Markov bases of \mathcal{A}, where we identify elements that differ by a sign, see [9, Definition 3.1]. The intersection of all minimal Markov bases of \mathcal{A} via the same identification, is called the indispensable subset of the universal Markov basis $\mathcal{M}(\mathcal{A})$ and is denoted by $\mathcal{S}(\mathcal{A})$. The Graver basis of $\mathcal{A}, \mathcal{G}(\mathcal{A})$, is the subset of $\mathcal{L}(\mathcal{A})$ whose elements have no proper conformal decomposition, i.e. $\mathbf{u} \in \mathcal{L}(\mathcal{A})$ is in $\mathcal{G}(\mathcal{A})$ if there is no other $\mathbf{v} \in \mathcal{L}(\mathcal{A})$ such that $\mathbf{v}^{+} \leq \mathbf{u}^{+}$and $\mathbf{v}^{-} \leq \mathbf{u}^{-}$, see [14, Section 4]. The Graver basis of \mathcal{A} is always a finite set and contains the universal Markov basis of \mathcal{A}, see [14, Section 7]. Thus the following inclusions hold:

$$
\mathcal{S}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A}) \subseteq \mathcal{G}(\mathcal{A})
$$

In [4] a description was given for the elements of $\mathcal{S}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$ that had a geometrical flavor: it considered the various fibers of \mathcal{A} in \mathbb{N}^{n} and the connected components of certain graphs. It did not examine the problem from a strict algebraic point of view such as conformality. This point of view is seen in [9], but only for the elements of $\mathcal{S}(\mathcal{A})$ from the side of sufficiency. In [9], the authors show that any vector with no proper semiconformal decomposition is necessarily in $\mathcal{S}(\mathcal{A})$, see [9, Lemma 3.10]. In this paper we attempt to give the complete algebraic characterization for the elements of $\mathcal{S}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$. This is done in Section 1. In Proposition 1.1 we prove that the condition of [9, Lemma 3.10] is not only sufficient but also necessary. We want to point out that the original definition of $\mathcal{S}(\mathcal{A})$ (see [9, Definition 3.9]) is different than ours, but via Proposition 1.1 the two definitions become equivalent.

Next, to give the algebraic characterization of the vectors in $\mathcal{M}(\mathcal{A})$, we introduce the notion of a proper strongly semiconformal decomposition and prove that the nonzero vectors with no proper strongly semiconformal decomposition are precisely the vectors of $\mathcal{M}(\mathcal{A})$, see Proposition 1.4. The relationship between these decompositions is given in Lemma 1.2. Schematically the following implications hold:
proper conformal \Rightarrow proper strongly semiconformal \Rightarrow proper semiconformal.

https://daneshyari.com/en/article/4584671

Download Persian Version:

https://daneshyari.com/article/4584671

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hara@math.auth.gr (H. Charalambous), athoma@uoi.gr (A. Thoma), vladoiu@gta.math.unibuc.ro (M. Vladoiu).
 ${ }^{1}$ The third author was partially supported by grant PN-II-ID-PCE-2011-3-1023, No. 247/2011, awarded by UEFISCDI.

