

Contents lists available at ScienceDirect

Journal of Algebra

The number of irreducible Brauer characters in a p-block of a finite group with cyclic hyperfocal subgroup

Atumi Watanabe

Kumamoto University, 1-16-37-403, Toroku, Chuo-ku, Kumamoto 862-0970, Japan

ARTICLE INFO

Article history: Received 13 January 2014 Available online 10 July 2014 Communicated by Michel Broué

Dedicated to the memory of Masafumi Murai

Keywords:
Finite group
Block
Cyclic hyperfocal subgroup
Hyperfocal subalgebra

ABSTRACT

We show that a p-block b of a finite group G with cyclic hyperfocal subgroup and the inertial index e has exactly e irreducible Brauer characters.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime and $(\mathcal{K}, \mathcal{O}, k)$ be a sufficiently large p-modular system such that k is algebraically closed. Let G be a finite group and let b be a (p)-block of G over \mathcal{O} with a defect pointed group P_{γ} and with inertial index $e = |N_G(P_{\gamma})/PC_G(P)|$. If P is cyclic, then b has e irreducible Brauer characters by Dade [5]. We will generalize this fact. Let Q be the hyperfocal subgroup of P_{γ} in the sense of Puig [16] or Puig [17], and let l(b) (resp. k(b)) be the number of irreducible Brauer (resp. ordinary) characters in b. Set

E-mail address: qqsh2tn9k@io.ocn.ne.jp.

 $b_0 = (b_P)^{N_G(P)}$, the Brauer correspondent of b. We obtain the following theorem. The purpose of this paper is to prove it.

Theorem 1. With the notation above, assume Q is cyclic.

- (i) $l(b) = e = l(b_0)$.
- (ii) $k(b) = k(b_0)$.

The above theorem is known to be true when Q = 1 by Broué and Puig [3]. We shall use the case P is cyclic and the case Q = 1 to prove the theorem. It is also a generalization of Watanabe [20], Corollary 2, in which P is abelian. Let b_P be the block of $C_G(P)$ determined by γ . Then (P, b_P) is a maximal b-Brauer pair and $N_G(P, b_P) = N_G(P_{\gamma})$. For any subgroup T of P, we denote by (T, b_T) the b-Brauer pair contained in (P, b_P) . By [16], 1.7,

$$Q = \langle [t, x] \mid t \in T \leq P, \ x \in N_G(T, b_T)_{p'} \rangle$$
$$= \langle [T, O^p(N_G(T, b_T))] \mid T \leq P \rangle$$
$$= \langle [T, O^p(N_G(T, b_T)/C_G(T))] \mid T \leq P \rangle,$$

where we denote by $G_{p'}$ the set of p-regular elements of G and by $O^p(G)$ the normal subgroup of G generated by $G_{p'}$. We call Q the hyperfocal subgroup of b (with respect to (P, b_P)). Clearly $N_G(P, b_P) \subseteq N_G(Q, b_Q)$ by the uniqueness of b_Q . Also, Q = 1 if and only if b is a nilpotent block. Then l(b) = 1 = e by [3].

For $a \in \mathcal{O}G$, we denote by a^* the image of a in kG by the canonical homomorphism. Let i be the image in kG of an element of γ , and set B = ikGi. Hence i is a source idempotent of b^* , and B is a source algebra of b^* (Thévenaz [19], §38). By [17], §13–§15 and [16], there is a P-stable interior kQ-algebra D such that

$$D \cap Pi = Qi$$
 and $B = \bigoplus_{u \in [Q \setminus P]} Du$.

We call D a hyperfocal subalgebra of b^* in B. Indeed a hyperfocal subalgebra is defined for b.

Let $\mathcal{F} = \mathcal{F}_{(P,b_P)}(G,b)$ be the Brauer category of b with respect to the maximal b-Brauer pair (P,b_P) . The objects of \mathcal{F} are the b-Brauer pairs contained in (P,b_P) and the set $\mathrm{Mor}_{\mathcal{F}}((S,b_S),(T,b_T))$ of morphisms from (S,b_S) to (T,b_T) is the set of all group homomorphisms $\phi:S\to T$ such that there exists $g\in G$ satisfying $(S,b_T)^g\leq (T,b_T)$ and $\phi(s)=s^g$ for all $s\in S$. As is well known, \mathcal{F} is a saturated fusion system when we regard \mathcal{F} as a fusion system over P. We refer Aschbacher et al. [2] and Craven [4] for fusion systems. For $T\leq P$, (T,b_T) is extremal in (P,b_P) in the sense of Alperin and Broué [1] if and only if $N_P(T)$ is a defect group of b_T as a block of $N_G(T,b_T)$.

Download English Version:

https://daneshyari.com/en/article/4584681

Download Persian Version:

https://daneshyari.com/article/4584681

<u>Daneshyari.com</u>