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Consider an exact couple in a semiabelian category in the 
sense of Palamodov, i.e., in an additive category in which 
every morphism has a kernel as well as a cokernel and the 
induced morphism between coimage and image is always 
monic and epic. Assume that the morphisms in the couple 
are strict, i.e., they induce even isomorphisms between 
their corresponding coimages and images. We show that 
the classical construction of Eckmann and Hilton in this 
case produces two derived couples which are connected by 
a natural bimorphism. The two couples correspond to the 
a priori distinct cohomology objects, the left resp. right 
cohomology, associated with the initial exact couple. The 
derivation process can be iterated under additional assump-
tions.
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1. Preliminaries

The aim of this note is to elaborate rigorously in which way the classical approach 
of Eckmann, Hilton [1] for constructing exact couples, see Massey [7], generalizes to 
semiabelian categories. For quasiabelian categories this was carried out by Kopylov [4]
in 2004; the negative answer to Răıkov’s conjecture given around 2008, see Rump [8], 
showed however that the class of semiabelian categories is strictly larger. We point out 
that semiabelian categories appear in different branches of mathematics, see Kopylov, 
Wegner [6, Section 1] for more details and references. For recent results on exact couples 
in non-additive situations we refer to Grandis [2].

In the sequel, A always denotes a preabelian category, i.e., A is additive and every 
morphism α in A has a kernel and a cokernel. We denote by ᾱ: Coimα → Imα the 
canonical morphism. The category A is semiabelian if the induced morphism ᾱ is always 
monic and epic, viz., a bimorphism. We say that a morphism α is strict if ᾱ is an 
isomorphism. We say that a kernel α is semistable if all its pushouts along arbitrary 
morphisms are again kernels. Semi-stable cokernels are defined dually. An exact couple 
in A is a diagram of the form

D D

E

α

βγ
(1)

such that imα = kerβ, im β = ker γ and im γ = kerα hold. If A is semiabelian, it is 
easy to see that the latter equations are equivalent to cokα = coim β, cok β = coim γ

and cok γ = coimα, respectively. E.g., coim β = cok imα = cok((imα)ᾱ coimα) = cokα
and the dual computation yield the first equivalence.

2. Results

Theorem 1. Let A be semiabelian and consider the exact couple (1). Assume that α, β
and γ are strict. Then the Eckmann–Hilton construction, see Section 3, gives rise to the 
following two diagrams

D1 D1

E−
1

α1

β−
1γ−

1

D1 D1

E+
1

α1

β+
1γ+

1

(2)

which we call the left resp. the right derived couple. The diagrams in (2) have the fol-
lowing properties.
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