

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The \mathfrak{sl}_N -web algebras and dual canonical bases

Marco Mackaay a,b,*,1

- ^a CAMGSD, Instituto Superior Técnico, Lisboa, Portugal
- ^b Universidade do Algarve, Faro, Portugal

ARTICLE INFO

Article history: Received 6 November 2013 Available online 18 April 2014 Communicated by Volodymyr Mazorchuk

Keywords:
Categorification
Webs
Matrix factorizations
Quantum groups
Skew Howe duality
Cyclotomic KLR algebras

ABSTRACT

In this paper, which is a follow-up to [38], I define and study \mathfrak{sl}_N -web algebras, for any $N\geqslant 2$. For N=2 these algebras are isomorphic to Khovanov's [22] are algebras and for N=3 they are Morita equivalent to the \mathfrak{sl}_3 -web algebras which I defined and studied together with Pan and Tubbenhauer [34]. The main result of this paper is that the \mathfrak{sl}_N -web algebras are Morita equivalent to blocks of certain level-N cyclotomic KLR algebras, for which I use the categorified quantum skew Howe duality defined in [38].

Using this Morita equivalence and Brundan and Kleshchev's [4] work on cyclotomic KLR-algebras, I show that there exists an isomorphism between a certain space of \mathfrak{sl}_N -webs and the split Grothendieck group of the corresponding \mathfrak{sl}_N -web algebra, which maps the dual canonical basis elements to the Grothendieck classes of the indecomposable projective modules (with a certain normalization of their grading).

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	55
2	Notation and conventions	58

 $^{^{\}ast}$ Correspondence to: Departamento de Matemática, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.

E-mail address: mmackaay@ualg.pt.

¹ M.M. was supported by the FCT – Fundacão para a Ciência e a Tecnologia, through project number PTDC/MAT/101503/2008, New Geometry and Topology.

3.	The s	pecial linear quantum algebra and its fundamental representations	60
	3.1.	The special linear quantum algebra	61
	3.2.	Fundamental representations	62
	3.3.	Tensors and tableaux	66
4.	SL_N \cdot	webs	67
	4.1.	The SL_N spider	68
	4.2.	Quantum skew Howe duality	70
	4.3.	The dual canonical basis	76
	4.4.	The canonical and the LT-bases and their Howe duals	83
5.	Web o	categories and algebras	86
	5.1.	The graded web category	87
	5.2.	Graded web algebras	88
6.	Categ	forified quantum \mathfrak{sl}_m and 2-representations	89
	6.1.	Categorified $\dot{\mathbf{U}}_v(\mathfrak{sl}_m)$	89
	6.2.	Cyclotomic KLR algebras and 2-representations	91
7.	Categ	corified skew Howe duality	93
	7.1.	Equivalences	93
	7.2.	Two consequences	98
Ackno	owledg	ments	99
Refer	ences		99

1. Introduction

In [14] Cautis, Kamnitzer and Morrison defined \mathfrak{sl}_N -webs and the relations they satisfy, for arbitrary $N \in \mathbb{N}_{\geqslant 2}$. In [38] Yonezawa and I defined certain \mathfrak{sl}_N -web spaces W_{Λ} for arbitrary $N \in \mathbb{N}_{\geqslant 2}$ and $\Lambda := N\omega_{\ell}$, where ω_{ℓ} is the ℓ -th fundamental \mathfrak{sl}_m -weight with $m = N\ell$ for arbitrary $\ell \in \mathbb{N}$. In the same paper, Cautis, Kamnitzer and Morrison also defined quantum skew Howe duality, which relates the representation theories of $\dot{\mathbf{U}}_q(\mathfrak{sl}_N)$ and $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$. Using this duality, we obtained a $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -action on W_{Λ} and showed that there exists an isomorphism of $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -modules

$$V_{\Lambda} \cong W_{\Lambda}. \tag{1}$$

Here V_{Λ} is the irreducible $\dot{\mathbf{U}}_{q}(\mathfrak{sl}_{m})$ -module of highest weight Λ , obtained as a quotient of the Verma module with the same highest weight.

In the same paper, we also defined \mathbb{C} -linear additive \mathfrak{sl}_N -web categories $\mathcal{W}_{\Lambda}^{\circ}$, using colored \mathfrak{sl}_N -matrix factorizations. We showed that $\mathcal{W}_{\Lambda}^{\circ}$ is a strong \mathfrak{sl}_m 2-representation and that there exists an equivalence of strong \mathfrak{sl}_m 2-representations

$$\mathcal{V}_{\Lambda}^{p} \cong \dot{\mathcal{W}}_{\Lambda}^{\circ}. \tag{2}$$

Here $\dot{W}_{\Lambda}^{\circ}$ denotes the Karoubi envelope (i.e. idempotent completion) of W_{Λ}° and $V_{\Lambda}^{p} := R_{\Lambda}$ -pmod_{gr} is the category of finite-dimensional graded projective modules of the cyclotomic Khovanov–Lauda–Rouquier (KLR) algebra R_{Λ} . As we argued in [38], this result can be seen as a categorification of an instance of the quantum skew Howe duality defined in [14].

Download English Version:

https://daneshyari.com/en/article/4584815

Download Persian Version:

https://daneshyari.com/article/4584815

<u>Daneshyari.com</u>