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1. Introduction

Famous Abhyankar—Moh Theorem [1,2] states that for a field k of characteristic zero,
if f(z) and g(z) are polynomials and the polynomial ring k[f(z), g(2)] = k[2], then either
deg f(z) divides degg(z) or degg(z) divides deg f(z). But to require the considered
polynomial curve to be a line at beginning is too strong and limits the applications of the
theorem. We find that as long as deg f(z) —c and deg g(z) — ¢ are in the degree semigroup
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of polynomial ring k[f(2), g(z)], where positive integer ¢ < min(deg f(z),degg(z)), we
have that either deg f(z) divides deg g(z) or deg g(z) divides deg f(z). Therefore we call
it Strong Abhyankar—-Moh Theorem. Using this strong theorem, we get a criterion for a
polynomial plane curve to be an embedded line.

2. Planar semigroups

Following [5], we first define characteristic é-sequence and planar semigroup.

Definition 2.1. Let § = (80,81, --,n) (h > 1) be a sequence of h + 1 natural numbers.
And let d = ged(dg,d1,-++,06—1) (1 < k < h+1). Then § is called a characteristic
d-sequence and the semigroup I' = I'(d) is called a planar semigroup if the following
conditions are satisfied:

(1) di >dy>dg>--->dp>dpe1 =1,
(2) Spg2— € I'(60,61,+,6k-1) (L < k < h),

di+1

(3) 0k < Op_1 %= (2< k < h).

The following concept of standard expansion is also from [5].

Definition 2.2. Let 6 = (09,01, --,0n) (h > 1) be a characteristic d-sequence and let s
be an integer. If

s =agdp +a101 + -+ apdp, where 0 < a; < di/dﬂ_l (1 <1< h) (221)
then we say that s has standard expansion with respect to §.
The following properties of characteristic d-sequence are well-known:

Lemma 2.3. (See [5].) Let & = (0¢9,01,---,9r) (b > 1) be a characteristic §-sequence.
Then for any integer s, there is unique standard expansion (2.2.1). Moreover,

(1) seI'(9) iff ap > 0.
(2) If di|s, then a; =0 fori < j <h.

We consider standard expansions of two integers and generalize (2) of the above
Lemma 2.3.

Proposition 2.4. Let § = (dg, 01, -+, 0r) (h > 1) be a characteristic 0-sequence.
(1) Let s1 and sy be two integers with standard expansions

Sk = appdp + ag101 + -+ - + appdp  where 0 < ap; < di/di+1 (1 <i<h) (2.4.1)
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