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The action of any group on itself by conjugation and the
corresponding conjugacy relation play an important role in
group theory. There have been several attempts to extend
the notion of conjugacy to semigroups. In this paper, we
present a new definition of conjugacy that can be applied to
an arbitrary semigroup and it does not reduce to the universal
relation in semigroups with a zero. We compare the new
notion of conjugacy with existing definitions, characterize the
conjugacy in various semigroups of transformations on a set,
and count the number of conjugacy classes in these semigroups
when the set is infinite.
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1. Introduction

Let G be a group. For elements a, b ∈ G, we say that a is conjugate to b if there exists
g ∈ G such that b = g−1ag. It is clear that this relation is an equivalence on G and
that a is conjugate to b if and only if there exists g ∈ G such that ag = gb. Using the
latter formulation, one may try to extend the notion of conjugacy to semigroups in the
following way: define a relation ∼l on a semigroup S by

a ∼l b ⇔ ∃g∈S1 ag = gb, (1.1)

where S1 is S with an identity adjoined. If a ∼l b, we say that a is left conjugate to b

[34,39,40]. (We will write “∼” with various subscripts for possible definitions of conjugacy
in semigroups. The subscript in ∼l comes from the name “left conjugate.”) In a general
semigroup S, the relation ∼l is reflexive and transitive, but not symmetric. If S has a
zero, then ∼l is the universal relation S × S. The relation ∼l is an equivalence in any
free semigroup. Lallement [28] has defined the conjugate elements of a free semigroup S

as those related by ∼l and showed that ∼l is equal to the following equivalence on the
free semigroup S:

a ∼p b ⇔ ∃u,v∈S1 a = uv and b = vu. (1.2)

In a general semigroup S, the relation ∼p is reflexive and symmetric, but not transitive.
If a ∼p b in a general semigroup, we say that a and b are primarily conjugate [27] (hence
the subscript in ∼p). Kudryavtseva and Mazorchuk [26,27] have defined the transitive
closure ∼∗

p of ∼p as a conjugacy relation in a general semigroup. (See also [18].)
Otto [34] has studied the relations ∼l and ∼p in the monoids S presented by finite

Thue systems, and introduced a new definition of conjugate elements in such an S:

a ∼o b ⇔ ∃g,h∈S1 ag = gb and bh = ha. (1.3)

(Since S is a monoid, S1 = S. However, we wanted to write the definition of ∼o so that
it would apply to any semigroup.) For any semigroup S, ∼o is an equivalence on S, and
so it provides another possible definition of conjugacy in a general semigroup. However,
this definition is not useful for semigroups S with zero since for every such S, we have
∼o = S × S. Note that ∼o is the largest equivalence contained in ∼l and that ∼p ⊆ ∼o

since if a = uv and b = vu, then au = ub and bv = va.
The aim of this paper is to introduce a new definition of conjugacy in an arbitrary

semigroup, avoiding the problems of the notions listed above. (That is, ∼l is not symmet-
ric; both ∼l and ∼o reduce to the universal relation in semigroups with zero; and ∼p is
not transitive and so it requires taking the transitive closure.) Our conjugacy will be an
equivalence relation ∼c on any semigroup S, it will not reduce to the universal relation
even when S has a zero, and it will be such that ∼c ⊆ ∼o ⊆ ∼l in every semigroup S,
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