

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Group rings that are exact

Yaroslav Shitov

National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia

ARTICLE INFO

Article history: Received 3 October 2013 Available online 28 January 2014 Communicated by Volodymyr Mazorchuk

MSC: 16D40 16D50

Keywords: Ring theory Group ring Self-injective ring

ABSTRACT

A ring R is left exact if, for every finitely generated left submodule $S \subset R^n$, every left R-linear function from S to R extends to a left R-linear function from R^n to R. The class of exact rings generalizes that of self-injective rings and has been introduced in a recent paper by Wilding, Johnson, and Kambites. In our paper we show that the group ring of a group G over a ring R is left exact if and only if R is left exact and G is locally finite.

@ 2014 Elsevier Inc. All rights reserved.

ALGEBRA

1. Introduction

The word *ring* will stand throughout our paper for an associative ring with a unity (which is different from zero), and R will denote such a ring. Recall that R is called *left self-injective* if it is injective as a left module over itself, that is, any left R-linear function from a submodule X of a left R-module Y to R can be extended to a left R-linear function from Y to R.

In a recent paper [3] Wilding, Johnson, and Kambites introduced a more general class of rings which they called *exact* rings. For any *m*-by-*n* matrix *A* over *R*, they define the left *R*-module Row(*A*) as the set of all vectors $x \in R^{1 \times n}$ that can be written as

E-mail address: yaroslav-shitov@yandex.ru.

^{0021-8693/\$ –} see front matter © 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.12.026

x = uA for some vector $u \in \mathbb{R}^{1 \times m}$. The right *R*-module Col(*A*) is defined as the set of all vectors $y \in \mathbb{R}^{m \times 1}$ that have the form y = Av for some $v \in \mathbb{R}^{n \times 1}$. As Theorem 3.4 of [3] shows, the ring *R* is *exact* if and only if, for every matrix $A \in \mathbb{R}^{m \times n}$, every left *R*-linear function from $\operatorname{Row}(A)$ to *R* extends to a left *R*-linear function from $\mathbb{R}^{1 \times n}$ to *R*, and every right *R*-linear function from $\operatorname{Col}(A)$ to *R* extends to a right *R*-linear function from function from $\mathbb{R}^{m \times 1}$ to *R*.

In our paper, we will separate between the concepts of left and right exactness. Noting that a left (right, respectively) submodule $S \subset \mathbb{R}^n$ is finitely generated if and only if $S = \operatorname{Row}(A)$ ($S = \operatorname{Col}(A)$, respectively) for some matrix A over R, we can rewrite the definition of exactness as follows.

Definition 1.1. A ring R is *left exact* if, for every finitely generated left submodule $S \subset \mathbb{R}^n$ and every left R-linear function $\varphi : S \to R$, there is a left R-linear function $\psi : \mathbb{R}^n \to \mathbb{R}$ satisfying $\varphi(x) = \psi(x)$ for any $x \in S$.

Replacing the word 'left' by 'right' everywhere in Definition 1.1, we obtain the definition of right exactness. As noted above, the authors of [3] call a ring exact if and only if is both left and right exact in our notation. Similarly, we will call a ring *self-injective* if it is both left and right self-injective.

As Definition 1.1 shows, we can get the definition of exactness from that of selfinjectivity by requiring X to be a finitely generated submodule of a free module $Y = R^n$. So any left self-injective ring must also be left exact, and in [3] the question has been asked whether the converse is true or not.

Question 1.2. (See [3, Section 8].) Does there exist a ring which is exact but not self-injective?

In our paper we examine the concept of exactness by applying it to studying the group rings. Recall that the group ring of a group G over R is the set R[G] of all formal sums $\rho = \sum_{h \in G} \rho_h h$ whose *coefficients* ρ_h belong to R and whose *support* (the set of all $h \in G$ satisfying $\rho_h \neq 0$) is finite. The sum $\rho' + \rho''$ is defined by $[\rho' + \rho'']_h = \rho'_h + \rho''_h$, and the product $\rho'\rho''$ by $[\rho'\rho'']_h = \sum_{g \in G} \rho'_{g^{-1}}\rho''_{gh}$. An element $\rho_e \in R$ is called the *constant term* of ρ if e is the unity of G, and we identify the subring of R[G] formed by the constant terms with the ring R.

The goal of our paper is to obtain a characterization of exact group rings similar to the following which is known for self-injective rings.

Theorem 1.3. (See [1].) Let \mathbb{F} be a field and G a group. The ring $\mathbb{F}[G]$ is left self-injective if and only if G is finite.

Namely, the main result of our paper will state that R[G] is left exact if and only if R is left exact and G is locally finite. This result will imply a positive answer for Download English Version:

https://daneshyari.com/en/article/4584844

Download Persian Version:

https://daneshyari.com/article/4584844

Daneshyari.com