Isomorphic pairs of quadratic forms

A.S. Sivatski
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil

A R T I C L E I N F O

Article history:

Received 30 November 2012
Available online 25 March 2014
Communicated by Eva
Bayer-Fluckiger
Keywords:
Quadratic form
Amer's theorem
Matrix
Determinant

Abstract

Let k be a field of characteristic distinct from $2, V$ a finite dimensional vector space over k. We call two pairs of quadratic k-forms $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right)$ on V isomorphic if there exists an isomorphism $s: V \rightarrow V$ such that $f_{2}=f_{1} \circ s, g_{2}=g_{1} \circ s$. We prove that if $f_{1}+t g_{1} \simeq f_{2}+t g_{2}$ over $k(t)$ and either the form $f_{1}+t g_{1}$ is anisotropic, or $\operatorname{det}\left(f_{1}+t g_{1}\right)$ is a squarefree polynomial of degree at least $\operatorname{dim} V-1$, then the pairs $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ are isomorphic.

© 2014 Elsevier Inc. All rights reserved.

Let k be a field of characteristic distinct from $2, V$ a finite dimensional vector space over $k, \operatorname{dim} V=n$. Let further $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right)$ be two pairs of quadratic k-forms on V. We call the pairs $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ isomorphic and denote this as $\left(f_{1}, g_{1}\right) \simeq\left(f_{2}, g_{2}\right)$, if there exists an isomorphism $s: V \rightarrow V$ such that $f_{2}=f_{1} \circ s, g_{2}=g_{1} \circ s$. If we fix a basis of V, then f_{1}, f_{2} are just homogeneous quadratic polynomials, which, slightly abusing notation, we identify with the corresponding symmetric matrices. In this interpretation isomorphism of pairs means that there exists a matrix $S \in G L_{n}(k)$ (the matrix of the map s with respect to the given basis) such that $f_{2}=S^{t} f_{1} S, g_{2}=S^{t} g_{1} S$. For any pair of forms (f, g) we can consider $\operatorname{det}(f+t g)$ as an element of $k[t]$ modulo $k^{* 2}, t$ being an indeterminate. Clearly, if $\left(f_{1}, g_{1}\right) \simeq\left(f_{2}, g_{2}\right)$, then $f_{1}+t g_{1} \simeq f_{2}+t g_{2}$ over $k(t)$ and $\operatorname{det}\left(f_{1}+t g_{1}\right) k^{* 2}=\operatorname{det}\left(f_{2}+t g_{2}\right) k^{* 2}$. In general the converse is not true. As a simple

[^0]counterexample consider the forms $f_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), g_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), f_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), g_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Then $f_{1}+t g_{1} \simeq f_{2}+t g_{2} \simeq \mathbb{H}$, and $\operatorname{det}\left(f_{1}+t g_{1}\right)=\operatorname{det}\left(f_{2}+t g_{2}\right)=-1$, but, obviously, $g_{1} \nsim g_{2}$, hence $\left(f_{1}, g_{1}\right) \not \nsim\left(f_{2}, g_{2}\right)$. The main purpose of this note is to obtain certain sufficient conditions, providing isomorphism of the pairs $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$. In the following statement we give such a condition and make clear why in the counterexample above the form $f_{1}+t g_{1}$ is isotropic.

Proposition 1. Assume that $f_{1}+t g_{1} \simeq f_{2}+t g_{2}$ and the form $f_{1}+t g_{1}$ is anisotropic. Then $\left(f_{1}, g_{1}\right) \simeq\left(f_{2}, g_{2}\right)$.

Proof. We recall the Amer theorem, which is the sticking point in the proof: Let Q_{1}, Q_{2} be quadratic forms on a finite dimensional vector space V over a field k. Then Q_{1}, Q_{2} vanish on a common r-dimensional subspace of V if and only if $Q_{1}+t Q_{2}$ vanishes on an r-dimensional subspace of $V_{k(t)}[1,3]$.

Since $f_{1}+t g_{1} \simeq f_{2}+t g_{2}$, the form $\left(f_{1} \perp-f_{2}\right)+t\left(g_{1} \perp-g_{2}\right)$ is hyperbolic, i.e. $\left(f_{1} \perp-f_{2}\right)+t\left(g_{1} \perp-g_{2}\right) \simeq n \mathbb{H}$. Hence by the Amer theorem applied to the forms $f_{1} \perp-f_{2}$ and $g_{1} \perp-g_{2}$, there is an n-dimensional subspace of $V \oplus V$, generated by vectors $\left(v_{i 1}, v_{i 2}\right)(1 \leqslant i \leqslant n)$ such that

$$
f_{1}\left(\sum_{i=1}^{n} x_{i} v_{i 1}\right)=f_{2}\left(\sum_{i=1}^{n} x_{i} v_{i 2}\right), \quad g_{1}\left(\sum_{i=1}^{n} x_{i} v_{i 1}\right)=g_{2}\left(\sum_{i=1}^{n} x_{i} v_{i 2}\right)
$$

for any coefficients $x_{i} \in k$. Suppose $\sum_{i=1}^{n} \lambda_{i} v_{i 1}=0$ for some $\lambda_{i} \in k$. If $\sum_{i=1}^{n} \lambda_{i} v_{i 2} \neq 0$, then we have

$$
f_{2}\left(\sum_{i=1}^{n} \lambda_{i} v_{i 2}\right)=f_{1}\left(\sum_{i=1}^{n} \lambda_{i} v_{i 1}\right)=0, \quad g_{2}\left(\sum_{i=1}^{n} \lambda_{i} v_{i 2}\right)=g_{1}\left(\sum_{i=1}^{n} \lambda_{i} v_{i 1}\right)=0
$$

Hence the forms f_{2} and g_{2} have a common nontrivial zero, which implies that the form $f_{2}+t g_{2} \simeq f_{1}+t g_{1}$ is isotropic, a contradiction. Therefore, $\sum_{i=1}^{n} \lambda_{i} v_{i 2}=0$, so $\sum_{i=1}^{n} \lambda_{i}\left(v_{i 1}, v_{i 2}\right)=0$. Since the vectors $\left(v_{i 1}, v_{i 2}\right)$ are linearly independent, we conclude that $\lambda_{1}=\cdots=\lambda_{n}=0$, which means that the set $\left\{v_{i 1}\right\}$ is linearly independent. By symmetry the set $\left\{v_{i 2}\right\}(1 \leqslant i \leqslant n)$ is linearly independent as well. In other words, the sets $\left\{v_{i 1}\right\}$ and $\left\{v_{i 2}\right\}(1 \leqslant i \leqslant n)$ are bases of V. Now let $s: V \rightarrow V$ be the isomorphism determined by $s\left(v_{i 2}\right)=v_{i 1}$. Then $f_{2}=f_{1} \circ s, g_{2}=g_{1} \circ s$, which implies that $\left(f_{1}, g_{1}\right) \simeq\left(f_{2}, g_{2}\right)$.

Corollary 2. Let k be a field, char $k \neq 2$, n a positive integer, $b_{i j}+c_{i j} t$ linear polynomials in $k[t], 1 \leqslant i, j \leqslant n$. Suppose that the $n \times n$ matrix $A=\left(b_{i j}+c_{i j} t\right)$ is symmetric, the corresponding quadratic form $f+t g$ over $k(t)$ is anisotropic, and $\operatorname{det} A \in k$. Then all the entries of A are elements of k, i.e. $c_{i j}=0$ for any i, j.

https://daneshyari.com/en/article/4584880

Download Persian Version:
https://daneshyari.com/article/4584880

Daneshyari.com

[^0]: E-mail address: alexander.sivatski@gmail.com.

