

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Quantum generalized Harish-Chandra isomorphisms

Polyxeni Lamprou

Weizmann Institute of Science, 76100 Rehovot, Israel

ARTICLE INFO

Article history: Received 12 June 2013 Available online 3 January 2014 Communicated by J.T. Stafford

Keywords:

Harish-Chandra isomorphism Quantized enveloping algebra

ABSTRACT

We give a different proof of generalized Harish-Chandra isomorphisms proven by Khoroshkin, Nazarov and Vinberg [9] and Joseph [6,7] as well as of their analogues in the quantum case.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, the ground field k is algebraically closed of characteristic 0.

1.1. Let $\mathfrak g$ be a semisimple Lie algebra, Φ its root system with respect to a fixed Cartan subalgebra $\mathfrak h$, π a basis in Φ and W its Weyl group. Let Λ be the weight lattice of $\mathfrak g$ and for any $\beta \in \Phi$, let h_β denote the corresponding coroot.

Let (,) be the W-invariant symmetric bilinear form on Λ . For all $\alpha \in \pi$, set $q_{\alpha} := q^{(\alpha,\alpha)/2}$ and

$$[n]_{\alpha} = \frac{q_{\alpha}^{n} - q_{\alpha}^{-n}}{q_{\alpha} - q_{\alpha}^{-1}}, \qquad [n]_{\alpha}! = [1]_{\alpha}[2]_{\alpha} \cdots [n]_{\alpha}, \qquad \begin{bmatrix} n \\ k \end{bmatrix}_{\alpha} = \frac{[n]_{\alpha}!}{[n-k]_{\alpha}![k]_{\alpha}!}.$$

1.2. Let $U_q(\mathfrak{g})$, or simply U_q , be the quantized enveloping algebra of \mathfrak{g} of simply connected type. Then U_q is the algebra generated over k(q) by symbols $\{E_\alpha, F_\alpha \mid \alpha \in \pi\}$ and $\{q^\lambda \mid \lambda \in \Lambda\}$ subject to the following relations.

$$\begin{split} q^{\lambda} &= 1, & \text{for } \lambda = 0. \\ q^{\lambda} q^{\mu} &= q^{\mu} q^{\lambda} = q^{\lambda + \mu}, & \text{for all } \lambda, \mu \in \Lambda. \\ q^{\lambda} E_{\alpha} q^{-\lambda} &= q^{(\alpha, \lambda)} E_{\alpha} = q^{\lambda(h_{\alpha})}_{\alpha} E_{\alpha}, & \text{for all } \lambda \in \Lambda, \alpha \in \pi. \end{split}$$

^{*} Work supported in part by the Israel Science Foundation Grant No. 882/10.

$$\begin{split} q^{\lambda}F_{\alpha}q^{-\lambda} &= q^{-(\alpha,\lambda)}F_{\alpha} = q_{\alpha}^{-\lambda(h_{\alpha})}F_{\alpha}, & \text{for all } \lambda \in \Lambda, \alpha \in \pi. \\ E_{\alpha}F_{\beta} - F_{\beta}E_{\alpha} &= \delta_{\alpha,\beta}\frac{q^{\alpha} - q^{-\alpha}}{q_{\alpha} - q_{\alpha}^{-1}}, & \text{for all } \alpha, \beta \in \pi. \\ \sum_{r=0}^{1-\beta(h_{\alpha})} (-1)^{r} \begin{bmatrix} 1 - \beta(h_{\alpha}) \\ r \end{bmatrix}_{\alpha} E_{\alpha}^{1-\beta(h_{\alpha}) - r} E_{\beta}E_{\alpha}^{r} &= 0, & \text{for all } \alpha, \beta \in \pi, \ \alpha \neq \beta. \\ \sum_{r=0}^{1-\beta(h_{\alpha})} (-1)^{r} \begin{bmatrix} 1 - \beta(h_{\alpha}) \\ r \end{bmatrix}_{\alpha} F_{\alpha}^{1-\beta(h_{\alpha}) - r} F_{\beta}F_{\alpha}^{r} &= 0, & \text{for all } \alpha, \beta \in \pi, \ \alpha \neq \beta. \end{split}$$

The q^{λ} , $\lambda \in \Lambda$ form a multiplicative group T with $q^{-\lambda} = (q^{\lambda})^{-1}$. Denote by $U_q^0 := k(q)[T]$ the group algebra of T. Let U_q^+ (resp. U_q^-) be the subalgebra of U_q generated by the E_{α} (resp. the F_{α}), for all $\alpha \in \pi$.

1.3. The algebra U_q has a Hopf algebra structure, with $\Delta: U_q \to U_q \otimes U_q$, $\varepsilon: U_q \to k$, $S: U_q \to U_q$ the co-product, co-unit and antipode respectively defined on the generators as follows. For all $\alpha \in \pi$, $\lambda \in \Lambda$,

$$\begin{split} &\Delta(E_{\alpha}) = E_{\alpha} \otimes q^{-\alpha} + 1 \otimes E_{\alpha}, & S(E_{\alpha}) = -E_{\alpha}q^{\alpha}, & \varepsilon(E_{\alpha}) = 0, \\ &\Delta(F_{\alpha}) = F_{\alpha} \otimes 1 + q^{\alpha} \otimes F_{\alpha}, & S(F_{\alpha}) = -q^{-\alpha}F_{\alpha}, & \varepsilon(F_{\alpha}) = 0, \\ &\Delta(q^{\lambda}) = q^{\lambda} \otimes q^{\lambda}, & S(q^{\lambda}) = q^{-\lambda}, & \varepsilon(q^{\lambda}) = 1. \end{split}$$

1.4. Let $U_+^+ := \{u \in U_q^+ \mid \varepsilon(u) = 0\}$, $U_+^- := \{u \in U_q^- \mid \varepsilon(u) = 0\}$ denote the augmentation ideals of U_q^+ , U_q^- respectively. There is a vector space decomposition of U_q as follows:

$$U_q = U_q^0 \oplus (U_+^- U_q + U_q U_+^+).$$

With respect to this decomposition one defines a Harish-Chandra map $p:U_q\to U_q^0$ as projection onto the first factor. It is known that the restriction of this map on the center $Z(U_q)$ of U_q is an isomorphism onto $(U_q^0)_{ev}^W$, where $(U_q^0)_{ev}$ is the subalgebra of U_q^0 generated by q^λ , $\lambda\in 2\Lambda$ and W. denotes the translated action of the Weyl group W on the torus T, given by [4, Section 7.1.17]:

$$w.q^{\lambda} = q^{w\lambda}q^{(\rho,w\lambda-\lambda)},\tag{1}$$

for all $\lambda \in \Lambda$, where ρ is the half sum of positive roots in Φ . Moreover, it is known that the center $Z(U_q)$ (and hence, $(U_q^0)_{ev}^{W}$) is a polynomial algebra.

1.5. Let V be a finite-dimensional simple U_q -module of type 1 (i.e. its highest weight is q^{λ} for some $\lambda \in \Lambda$). For all $\mu \in \Lambda$ set

$$V_{\mu} := \big\{ v \in V \ \big| \ q^{\lambda}v = q^{(\lambda,\mu)}v, \text{ for all } \lambda \in \Lambda \big\},$$

the weight space of V corresponding to μ .

We consider a left and a right action of U_q on $V \otimes U_q$ as follows. For all $x, a \in U_q$, $v \in V$ we set

$$x(v\otimes a):=\sum_i x_iv\otimes x^ia$$

Download English Version:

https://daneshyari.com/en/article/4584896

Download Persian Version:

https://daneshyari.com/article/4584896

Daneshyari.com