

# On nilpotent and solvable Lie algebras of derivations

## Ie.O. Makedonskyi, A.P. Petravchuk\*

Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine

#### ARTICLE INFO

Article history: Received 15 June 2013 Available online 8 January 2014 Communicated by Volodymyr Mazorchuk

MSC: primary 17B66 secondary 17B05, 13N15

Keywords: Lie algebra Vector field Solvable algebra Derivation Commutative ring

#### ABSTRACT

Let K be a field and A be a commutative associative K-algebra which is an integral domain. The Lie algebra  $\operatorname{Der}_{K} A$  of all K-derivations of A is an A-module in a natural way, and if R is the quotient field of A then  $R \operatorname{Der}_K A$  is a vector space over R. It is proved that if L is a nilpotent subalgebra of  $R \operatorname{Der}_{K} A$  of rank k over R (i.e. such that  $\dim_R RL = k$ , then the derived length of L is at most k and L is finite dimensional over its field of constants. In case of solvable Lie algebras over a field of characteristic zero their derived length does not exceed 2k. Nilpotent and solvable Lie algebras of rank 1 and 2 (over R) from the Lie algebra  $R \operatorname{Der}_K A$  are characterized. As a consequence we obtain the same estimations for nilpotent and solvable Lie algebras of vector fields with polynomial, rational, or formal coefficients. Analogously, if X is an irreducible affine variety of dimension n over an algebraically closed field K of characteristic zero and  $A_X$  is its coordinate ring, then all nilpotent (solvable) subalgebras of  $\operatorname{Der}_K A_X$  have derived length at most n (2nrespectively).

© 2013 Elsevier Inc. All rights reserved.

ALGEBRA

### Introduction

Let  $\mathbb{K}$  be a field and A be an associative commutative  $\mathbb{K}$ -algebra with unity, without zero divisors, i.e. an integral domain. The set  $\text{Der}_{\mathbb{K}} A$  of all  $\mathbb{K}$ -derivations of A, i.e.

0021-8693/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.11.021

<sup>\*</sup> Corresponding author.

*E-mail addresses:* makedonskyi@univ.kiev.ua, makedonskyi.e@gmail.com (Ie.O. Makedonskyi), aptr@univ.kiev.ua, apetrav@gmail.com (A.P. Petravchuk).

 $\mathbb{K}$ -linear operators D on A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b) for all  $a, b \in A$  is a Lie algebra over  $\mathbb{K}$  and an A-module in a natural way: given  $a \in A$ ,  $D \in \operatorname{Der}_{\mathbb{K}} A$ , the derivation aD sends any element  $x \in A$  to  $a \cdot D(x)$ . The structure of the Lie algebra  $\operatorname{Der}_{\mathbb{K}} A$  is of great interest because, in geometric terms, derivations can be considered as vector fields on geometric objects. For example, in case  $\mathbb{K} = \mathbb{C}$  and  $A = \mathbb{C}[x_1, \ldots, x_n]$ , the polynomial ring, any  $D \in \operatorname{Der}_{\mathbb{K}} A$  is of the form

$$D = f_1 \frac{\partial}{\partial x_1} + \dots + f_n \frac{\partial}{\partial x_n}, \quad f_i \in \mathbb{C}[x_1, \dots, x_n],$$

i.e. D is a vector field on  $\mathbb{C}^n$  with polynomial coefficients. Lie algebras of vector fields with polynomial, formal power series, or analytical coefficients were studied intensively by many authors (see, for example, [7,1-4,11,12]).

In general case, when A is an integral domain, subalgebras L of  $\text{Der}_{\mathbb{K}} A$  such that L are submodules of the A-module  $\text{Der}_{\mathbb{K}} A$  were studied in [6] (see also [10,13]), and sufficient conditions were given for L to be simple. In this paper, we study subalgebras of the Lie algebra  $\text{Der}_{\mathbb{K}} A$  at the other extreme: nilpotent and solvable, under the condition that they are of finite rank over A. Recall that if R is the quotient field of A, then the rank  $\text{rk}_R L$  is defined as  $\text{rk}_R L = \dim_R RL$ . Any subalgebra L of the Lie algebra  $\text{Der}_{\mathbb{K}} A$ determines uniquely the field F = F(L) of constants consisting of all  $r \in R$  such that D(r) = 0 for all  $D \in L$ . The vector space FL over the field F is actually a Lie algebra over F (note that RL being a Lie algebra over  $\mathbb{K}$  is not in general a Lie algebra  $R \text{Der}_{\mathbb{K}} A$ with  $\text{rk}_R L = k$ , then the derived length of L is at most k and the Lie algebra FLis finite dimensional over F (Theorem 1). In case when L is solvable,  $\text{rk}_R L = k$  and  $\text{char } \mathbb{K} = 0$ , the derived length does not exceed 2k (Theorem 2). If  $\dim_{\mathbb{K}} L < \infty$ , then the last estimation can be improved to k + 1.

If we consider the important case  $\mathbb{K} = \mathbb{C}$  and  $A = \mathbb{C}[[x_1, \ldots, x_n]]$ , the ring of formal power series, we get that nilpotent (solvable) subalgebras of the Lie algebra  $\text{Der}_{\mathbb{K}} A$  of rank k over R have derived length  $\leq k \ (\leq 2k$ , respectively). Note that in this particular case it was proved in [9] that all nilpotent subalgebras have derived length at most n and solvable at most 2n (see Corollary 3).

One can apply obtained results for vector fields on an affine variety X and obtain analogous bounds for the derived length of nilpotent and solvable subalgebras of the Lie algebra  $\text{Der}_{\mathbb{K}} A_X$  where  $A_X$  is the coordinate ring of X (see Corollary 4).

We also give a rough characterization of nilpotent and solvable subalgebras of rank 1 and 2 over R from the Lie algebra  $R \operatorname{Der}_{\mathbb{K}} A$  (over their fields of constants). Such a characterization can be applied to study finite dimensional Lie algebras of smooth vector fields in three variables (the case of one and two variables was studied in [7,3,4]). Using the same approach we gave in [8] a description of finite dimensional subalgebras of W(A)in case  $A = \mathbb{K}(x, y)$ , the field of rational functions.

We use standard notations, the ground field  $\mathbb{K}$  is arbitrary unless otherwise stated. The quotient field of the integral domain A under consideration will be denoted by R. Download English Version:

# https://daneshyari.com/en/article/4584902

Download Persian Version:

https://daneshyari.com/article/4584902

Daneshyari.com