

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A generalization of the Burnside basis theorem

Paul Apisa^{a,*}, Benjamin Klopsch^{b,1}

^a Department of Mathematics, University of Chicago, Chicago, IL 60615, United States
^b Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX, UK

ARTICLE INFO

Article history: Received 10 February 2013 Available online 20 December 2013 Communicated by Ronald Solomon

Keywords: Finite groups Basis Minimal generating sets Burnside basis theorem Matroids

ABSTRACT

A \mathcal{B} -group is a group such that all its minimal generating sets (with respect to inclusion) have the same size. We prove that the class of finite \mathcal{B} -groups is closed under taking quotients and that every finite \mathcal{B} -group is solvable. Via a complete classification of Frattini-free finite \mathcal{B} -groups we obtain a general structure theorem for finite \mathcal{B} -groups. Applications include new proofs for the characterization of finite matroid groups.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a finite group. A generating set *X* of *G* is said to be *minimal* if no proper subset of *X* generates *G*. We denote by d(G) the minimal number of generators of *G*, i.e., the smallest size of a minimal generating set of *G*, and we write m(G) for the largest size of a minimal generating set of *G*.

Whereas the invariant d(G) has been well studied for many groups G, its counterpart m(G) has not received a similar degree of attention. First steps toward investigating the latter have been taken in the context of permutation groups. For instance, in [10] Whiston proved that m(Sym(n)) = n - 1 for the finite symmetric group of degree n. Furthermore, Cameron and Cara gave in [2] a complete description of the maximal independent generating sets of Sym(n); these are precisely the minimal generating sets of maximal size. Clearly, Whiston's result implies that

 $m(\operatorname{Sym}(n)) - d(\operatorname{Sym}(n)) \to \infty \text{ as } n \to \infty.$

^{*} Corresponding author.

E-mail addresses: paul.apisa@gmail.com (P. Apisa), Benjamin.Klopsch@ovgu.de (B. Klopsch).

¹ Current address: Institut für Algebra und Geometrie, Mathematische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39016 Magdeburg, Germany.

9

This suggests a natural 'classification problem': given a non-negative integer *c*, characterize all finite groups *G* such that $m(G) - d(G) \leq c$. Since the Frattini subgroup $\Phi(G)$ consists of all 'non-generators' of *G*, we have $d(G) = d(G/\Phi(G))$ and $m(G) = m(G/\Phi(G))$. Hence one may initially focus on groups *G* which are *Frattini-free*, i.e., for which $\Phi(G) = 1$.

In the present article we solve the above stated problem for c = 0. We say that the group *G* has property \mathcal{B} , or the *weak basis property*, if all its minimal generating sets have the same size, equivalently if m(G) = d(G). Groups with property \mathcal{B} are called \mathcal{B} -groups for short. A group is said to have the *basis property* if all its subgroups have property \mathcal{B} . The Burnside basis theorem states that all finite *p*-groups are \mathcal{B} -groups and, consequently, have the basis property.

Groups with the basis property as well as variants, such as matroid groups, have been considered by a number of authors; e.g., see [5] and the references therein. Indeed, McDougall-Bagnall and Quick initiated in [5] the systematic study of finite \mathcal{B} -groups and used this to classify groups with the basis property. Recently a mistake was discovered in their main theorem; see Appendix A. The classification of groups with the basis property is therefore again an open problem. Regarding finite \mathcal{B} -groups, McDougall-Bagnall and Quick raised the following fundamental questions. Is it true that property \mathcal{B} is inherited by quotient groups? Is it possibly true that every finite \mathcal{B} -group is solvable? We answer both questions positively.

Proposition 1.1. Every quotient of a finite *B*-group is again a *B*-group.

Theorem 1.2. *Every finite B*-group is solvable.

Remark 1.3. The results of Saxl and Whiston in [7] show that for projective special linear groups $G = PSL_2(p^r)$ the difference m(G) - d(G) depends on the number of prime divisors of r. In particular, m(G) - d(G) = 1 for all $G = PSL_2(p)$ with p not congruent to ± 1 modulo 8 or 10. Therefore generalizing Theorem 1.2 to groups G with $m(G) - d(G) \leq 1$ is an interesting open problem.

From Proposition 1.1 and Theorem 1.2 we obtain a characterization of finite \mathcal{B} -groups, based on a complete classification of Frattini-free finite \mathcal{B} -groups. For any prime p we denote by \mathbb{F}_p the field with p elements.

Theorem 1.4. Let G be a finite group. Then G is a Frattini-free B-group if and only if one of the following holds:

- (1) *G* is an elementary abelian *p*-group for some prime *p*;
- (2) $G = P \rtimes Q$, where P is an elementary abelian p-group and Q is a non-trivial cyclic q-group, for distinct primes $p \neq q$, such that Q acts faithfully on P and the $\mathbb{F}_p[Q]$ -module P is isotypical, i.e., a direct sum of m(G) 1 isomorphic copies of one simple module.

Remark 1.5. This means that there are no Frattini-free finite \mathcal{B} -groups beyond the examples constructed in [5, §3]. Indeed, the groups listed in (2) of Theorem 1.4 can be concretely realized as 'semidirect products via multiplication in finite fields of characteristic p': the simple module in question is of the form $\mathbb{F}_p(\zeta)$, the additive group of a finite field generated by a q^k th root of unity ζ over \mathbb{F}_p , with a generator z of Q acting on $\mathbb{F}_p(\zeta)$ as multiplication by ζ .

Using the explicit description of Frattini-free finite \mathcal{B} -groups, we determine the automorphism groups of such groups; see Theorem 4.1. From McDougall-Bagnall and Quick's results in [5] we obtain a characterization of finite \mathcal{B} -groups.

Theorem 1.6. Let G be a finite group. Then G is a B-group if and only if one of the following holds:

- (1) *G* is a *p*-group for some prime *p*;
- (2) $G = P \rtimes Q$, where *P* is a *p*-group and *Q* is a cyclic *q*-group, for distinct primes $p \neq q$, such that $C_Q(P) \neq Q$ and the $\mathbb{F}_p[Q/C_Q(P)]$ -module $P/\Phi(P)$ is isotypical, i.e., a direct sum of isomorphic copies of one simple module.

Moreover, in case (2) one has $\Phi(G) = \Phi(P) \times C_0(P)$.

Download English Version:

https://daneshyari.com/en/article/4584908

Download Persian Version:

https://daneshyari.com/article/4584908

Daneshyari.com