

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Examples of polycyclic groups with regular automorphisms of order 4

B.A.F. Wehrfritz

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, United Kingdom

ARTICLE INFO

Article history: Received 30 April 2012 Available online 20 December 2013 Communicated by Martin Liebeck

MSC: 20F16 20E36 20F28

Keywords: Polycyclic groups Automorphisms of order 4

ABSTRACT

We construct torsion-free polycyclic groups with fixed-pointfree automorphisms of order 4 that are not nilpotent-by-finite, not metabelian-by-finite, not nilpotent-by-abelian and hence not centre-by-metabelian. (Note that such groups are always finite extensions of centre-by-metabelian groups.)

© 2013 Elsevier Inc. All rights reserved.

Let ϕ be an automorphism of the group *G* of order 4. If *G* is finite and if $C_G(\phi) = \langle 1 \rangle$, that is, if ϕ is fixed-point-free, then combining work of Kovács, see [3], and Gorenstein and Herstein, see [2], it follows that *G* is centre-by-metabelian. Moreover examples show that *G* need not be nilpotent nor metabelian. By Proposition 2.1 of Endimioni's paper [1] if $C_G(\phi)$ is finite and if *G* is polycyclic (more generally if *G* is a finite extension of a torsion-free soluble group of finite rank, see Corollary 1 of [4]), then *G* has a centre-by-metabelian characteristic subgroup of finite index. The finite counter examples referred to above do not rule out the possibilities that *G* here is nilpotent-by-finite or metabelian-by-finite. The following, however, does, even if we assume the stronger hypothesis that ϕ is fixed-point-free.

Example 1. There exists a torsion-free polycyclic group *G* with a fixed-point-free automorphism ϕ of order 4 such that *G* is not nilpotent-by-finite and is not metabelian-by-finite.

0021-8693/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.10.027

E-mail address: b.a.f.wehrfritz@qmul.ac.uk.

If *G* is polycyclic-by-finite then *G* has a torsion-free characteristic subgroup *H* of finite index. If $C_G(\phi)$ is finite then $\phi|_H$ is fixed-point-free. We cannot conclude that *H* is centre-by-metabelian. In particular if $C_G(\phi) = \langle 1 \rangle$, we can conclude that *G* is a finite extension of a centre-by-metabelian group, but not that *G* itself is centre-by-metabelian, unlike the finite case. We construct Example 2 below as an extension of a subgroup of Example 1.

Example 2. There exists a torsion-free polycyclic group *S* with a fixed-point-free automorphism ϕ of order 4 such that *S* is not nilpotent-by-abelian and in particular is not centre-by-metabelian.

Construction of **Example 1.** Let $K = \langle a, b \rangle$ be a free nilpotent group of class 2 and rank 2 on the basis $\{a, b\}$ and set c = [b, a] (so ba = abc). Consider the automorphisms x and θ of K given by

$$x: a \mapsto b$$
 and $b \mapsto a^{-1}b^3$

and

$$\theta: a \mapsto a^{-1}$$
 and $b \mapsto b^{-1}$.

Then *x* acts rationally irreducibly and in particular fixed-point freely on K/K' (its eigenvalues on K/K' being $(3 \pm \sqrt{5})/2$) and centralizes $K' = \langle c \rangle$. Also $\theta^2 = 1$ and θ inverts K/K' and centralizes K'. Clearly *x* has infinite order, even on K/K'.

Let $k \mapsto k_i$ be an isomorphism of K onto the group K_i for i = 1, 2 and set $H = \langle K_1 \times K_2: c_1 = c_2^{-1} \rangle$, the central product of K_1 and K_2 amalgamating K'_1 and K'_2 via inversion. Let $y \in \text{Aut } H$ act as x on K_1 and as x^{-1} on K_2 ; this map is well defined since x centralizes K'. Define the automorphism f of H by $(k_1l_2)^f = (l\theta)_1k_2$ for all k and l in K; again this is well defined. Also f^2 acts as θ on each of K_1 and K_2 and in particular inverts H/H' and centralizes H' and f has order 4.

Let $Y = \langle y^{(f)} \rangle \leq Aut H$ and $G = \langle Y, H \rangle$, a subgroup of the holomorph of H satisfying $[H', G] = \langle 1 \rangle$. Then f normalizes G and defines an automorphism ϕ of G by conjugation; clearly ϕ has order 4. Now H' is isomorphic to the integers \mathbb{Z} and $H/H' \cong \mathbb{Z}^{(4)}$. Also θ is central in Aut(K/K'), so $y\phi = y^f$ acts as y^{-1} on H/H'. Thus $Y = \langle y \rangle Z$ for $Z = C_Y(H/H')$ and $Y/Z \cong \langle y \rangle \cong \mathbb{Z}$. Stability theory yields that Z embeds into $Hom(\mathbb{Z}^{(4)}, \mathbb{Z})$, so Z is free abelian of rank at most 4. Therefore G is poly infinite cyclic (with Hirsch number between 6 and 10).

Now ϕ maps a_1 , b_1 , a_2 , and b_2 to respectively a_2 , b_2 , a_1^{-1} and b_1^{-1} and these four elements determine a basis of the free abelian group H/H'. A simple check shows that ϕ acts fixed-point freely on H/H'. It also shows that $c_1\phi = c_2 = c_1^{-1}$ and H' is infinite cyclic; thus ϕ also acts fixed-point freely on H'. We saw above that ϕ acts fixed-point freely on Y/Z (it inverts it). Thus to prove that ϕ acts fixed-point freely on Z.

Let $z \in Z$ and $h \in H$ and suppose $z\phi = z$. Then

$$[h,h\phi, z] = [h, z][h\phi, z] = [h, z][h, z]\phi = [h, z][h, z]^{-1} = 1$$

Hence $C_H(z) \ge \langle h.h\phi: h \in H \rangle H'$. Let $k \in K$, so $k_i \in K_i$. Then $k_1(k_1\phi) = k_1k_2$ and $k_2(k_2\phi) = k_2(k\theta)_1 \in k_1^{-1}k_2H'$. Hence $k_2^2 \in C_H(z)$. Similarly $k_1^2 \in C_H(z)$ and therefore $H^2 \le C_H(z)$. But then $[h, z]^2 = [h^2, z] = 1$ and yet H' is torsion-free. Consequently [h, z] = 1, so $[H, z] = \langle 1 \rangle$ and yet $z \in Aut H$. Hence z = 1 and therefore ϕ acts fixed-point freely on Z and G.

It remains to show that *G* is not nilpotent-by-finite and not metabelian-by-finite and for this it suffices to show that $\langle x \rangle K$ has neither of these properties. As pointed out above the eigenvalues of *x* on K/K' are $(3 \pm \sqrt{5})/2$. If $(3 + \sqrt{5})^m$ is rational for some positive integer *m* then $\sqrt{5}$ is rational, which it is not. Hence $\langle x^m \rangle$ acts rationally irreducibly on K/K' for every positive integer *m*. Suppose $\langle x \rangle K/K'$ is nilpotent-by-finite. Then x^m acts unipotently and hence rationally reducibly on K/K' for some positive integer *m*. Thus $\langle x \rangle K/K'$ and hence $\langle x \rangle K$ are not nilpotent-by-finite.

Download English Version:

https://daneshyari.com/en/article/4584914

Download Persian Version:

https://daneshyari.com/article/4584914

Daneshyari.com