# The Golod property for products and high symbolic powers of monomial ideals 

S.A. Seyed Fakhari ${ }^{\text {a, }}$, V. Welker ${ }^{\text {b }}$<br>${ }^{\text {a }}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM),<br>P.O. Box 19395-5746, Tehran, Iran<br>${ }^{\text {b }}$ Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032 Marburg, Germany

## A R T I C L E I N F O

## Article history:

Received 8 October 2012
Available online 24 December 2013
Communicated by Luchezar L.
Avramov

## $M S C$ :

13D40
Keywords:
Monomial ideal
Golod ring
Product ideal
Symbolic power
Strong gcd-condition
Moment-angle complex


#### Abstract

We show that for any two proper monomial ideals $I$ and $J$ in the polynomial ring $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring $S / I J$ is Golod. We also show that if $I$ is squarefree then for large enough $k$ the quotient $S / I^{(k)}$ of $S$ by the $k$ th symbolic power of $I$ is Golod. As an application we prove that the multiplication on the cohomology algebra of some classes of moment-angle complexes is trivial.


© 2013 Published by Elsevier Inc.

## 1. Introduction

For a graded ideal $I$ in the polynomial $\operatorname{ring} S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ in $n$ variables over the field $\mathbb{K}$ the ring $S / I$ is called Golod if all Massey operations on the Koszul complex of $S / I$ with respect of $\mathbf{x}=x_{1}, \ldots, x_{n}$ vanish. The naming gives credit to Golod [11] who

[^0]showed that the vanishing of the Massey operations is equivalent to the equality case in the following coefficientwise inequality of power-series which was first derived by Serre:
$$
\sum_{i \geqslant 0} \operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S / I}(\mathbb{K}, \mathbb{K}) t^{i} \leqslant \frac{(1+t)^{n}}{1-t \sum_{i \geqslant 1} \operatorname{dim}_{\mathbb{K}} \operatorname{Tor}_{i}^{S}(S / I, \mathbb{K}) t^{i}}
$$

We refer the reader to [1] and [8] for further information on the Golod property and to [5] and [12] for the basic concepts from commutative algebra underlying this paper. We prove the following two results.

Theorem 1.1. Let $I, J$ be two monomial ideals in $S$ different from $S$. Then $S / I J$ is Golod.

For our results on symbolic powers we have to restrict ourselves to squarefree monomial ideals $I$. This is due to the fact that in this case $I$ has a primary decomposition of the form $I=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{r}$, where every $\mathfrak{p}_{i}$ is an ideal of $S$ generated by a subset of the variables [12, Lem. 1.5.4]. Moreover, in this situation for a positive integer $k$ the $k$ th symbolic power $I^{(k)}$ of $I$ coincides with $\mathfrak{p}_{1}^{k} \cap \cdots \cap \mathfrak{p}_{r}^{k}$ [12, Prop. 1.4.4].

Theorem 1.2. Let I be a squarefree monomial ideal in $S$ different from $S$. Then for $k \gg 0$ the $k$ th symbolic power $I^{(k)}$ is Golod for $k \gg 0$.

Besides the strong algebraic implications of Golodness the case of squarefree monomial ideals relates to interesting topology. Let $\Delta$ be a simplicial complex on ground set $[n]$ and let $\mathbb{K}[\Delta]$ be its Stanley-Reisner ring (see Section 4 for basic facts about Stanley-Reisner rings). By work of Buchstaber and Panov [6, Thm. 7.7], extending an additive isomorphism from [10], it is known that there is an algebra isomorphism of the Koszul homology $\mathrm{H}_{*}(\mathbf{x}, \mathbb{K}[\Delta])$ and the singular cohomology ring $\mathrm{H}^{*}\left(M_{\Delta} ; \mathbb{K}\right)$ where $M_{\Delta}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in\left(D^{2}\right)^{n} \mid\left\{i \mid v_{i} \notin S^{1}\right\} \in \Delta\right\}$. Here $D^{2}=\left\{v \in \mathbb{R}^{2} \mid\|v\| \leqslant 1\right\}$ is the unit disk in $\mathbb{R}^{2}$ and $S^{1}$ its bounding unit circle. Note that the isomorphism is not graded for the usual grading of $\mathrm{H}_{*}(\mathbf{x}, \mathbb{K}[\Delta])$ and $\mathrm{H}^{*}\left(M_{\Delta} ; \mathbb{K}\right)$. The complex $M_{\Delta}$ is the momentangle complex or polyhedral product of the pair $\left(D^{2}, S^{1}\right)$ for $\Delta$ (we refer the reader to [6] and [7] for background information). Last we write $\Delta^{\circ}=\{A \subseteq[n] \mid[n] \backslash A \notin \Delta\}$ for the Alexander dual of the simplicial complex $\Delta$. Now we are in position to formulate the following consequence of Theorem 1.1.

Corollary 1.3. Let $\Delta$ be a simplicial complex such that $\Delta=\left(\Delta_{1}^{\circ} * \Delta_{2}^{\circ}\right)^{\circ}$ for two simplicial complexes $\Delta_{1}, \Delta_{2}$ on disjoint ground sets. Then the multiplication on $\mathrm{H}^{*}\left(M_{\Delta} ; \mathbb{K}\right)$ is trivial.

The main tool for the proof of Theorem 1.1 and Theorem 1.2 is combinatorial. Let $I$ be a monomial ideal and write $G(I)$ for the set of minimal monomial generators of $I$. In [19, Def. 3.8] the author introduces a combinatorial condition on $G(I)$ that in [3] was

# https://daneshyari.com/en/article/4584924 

Download Persian Version:
https://daneshyari.com/article/4584924

## Daneshyari.com


[^0]:    E-mail addresses: fakhari@ipm.ir (S.A. Seyed Fakhari), welker@mathematik.uni-marburg.de (V. Welker).

    1 The first author acknowledges support from DAAD as a visiting PhD student at Philipps-Universität Marburg.

