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In this short note we study the cohomology algebra of
saturated fusion systems using finite groups which realize
saturated fusion systems and Hochschild cohomology of group
algebras. A similar result to a theorem of Alperin [1] is
proved for varieties of cohomology algebras of fusion systems
associated to block algebras of finite groups.
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1. Introduction

A saturated fusion system F on a finite p-group P is a category whose objects are
the subgroups of P and whose morphisms satisfy certain axioms mimicking the behavior
of a finite group G having P as a Sylow subgroup. The axioms of saturated fusion
systems were invented by Puig in early 1990’s. The cohomology algebra of a p-local finite
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group with coefficients in Fp is introduced in [4, §5]. Let k be an algebraically closed
field of characteristic p. We denote by HH∗(kG) the Hochschild cohomology algebra of
the group algebra kG and by H∗(G, k) the cohomology algebra of the group G with
trivial coefficients. As in [8] we will use the language of homotopy classes of chain maps
(see [8, 2.8, 4.2]). We denote by H∗(F ) the algebra of stable elements of F , i.e. the
cohomology algebra of the saturated fusion system F , which is the subalgebra of H∗(P, k)
consisting of elements [ζ] ∈ H∗(P, k) such that

resPQ
(
[ζ]

)
= resϕ

(
[ζ]

)
,

for any ϕ ∈ HomF (Q,P ) and any subgroup Q of P . This is the main object of study in
this paper. Moreover Broto, Levi and Oliver showed that any saturated fusion system F

has a non-unique P–P -biset X with certain properties formulated by Linckelmann and
Webb (see [4, Proposition 5.5]). Such a P–P -biset X is called a characteristic biset.
Using this biset, S. Park noticed in [11] a result which says that a saturated fusion
system can be realized by a finite group. This finite group is G = Aut(XP ), that is the
group of bijections of the characteristic biset X, preserving the right P -action. So, by
[11, Theorem 3], we can identify F with FP (G) which is the fusion system on P such
that for every Q,R � P we have

HomFP (G)(Q,R) =
{
ϕ: Q → R

∣∣ ∃x ∈ G s.t. ϕ(u) = xux−1, ∀u ∈ Q
}
.

In Section 2 for a finite group G and P a p-subgroup such that FP (G) is a saturated
fusion system we associate and analyze a restriction map from the cohomology algebra
of the group G with coefficients in the field k to the cohomology algebra of the fusion
system, H∗(FP (G)). For shortness we denote F = FP (G) and this map by ρF ,G. From
the above we can identify any saturated fusion system F with a saturated fusion system
of the form FP (G), where G = Aut(XP ) for X a characteristic biset; but we prefer to
work under a more general setup. Although some results are straightforward translations
of results in the literature, to prove them we need the machinery of transfer maps be-
tween Hochschild cohomology algebras of group algebras developed in [8]. Since H∗(F )
is a graded commutative finitely generated k-algebra we can associate the spectrum of
maximal ideals, i.e. the variety denoted VF . For U a finitely generated kP -module we
define also a support variety, denoted VF (U), in a similar way as the usual support
variety in group cohomology. The main result of this section is Theorem 2.1, where we
prove that ρF ,G induces a finite map on varieties and that we can recover VF (U) from
the support variety VG(U) associated to any finitely generated kG-module U , which was
first introduced by Carlson in [6].

In Section 3 we consider only fusion systems associated to blocks. If b is a block
idempotent of the group algebra kG (i.e. a primitive idempotent in the center of the
group algebra) with defect group P then it is well known that the set of b-Brauer pairs
form a G-poset which defines a saturated fusion system. We denote this category by FG,b.
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