

Journal of Algebra 402 (2014) 174-177

Trivial unit conjecture and homotopy theory

Shengkui Ye^{a,b,*}

 ^a Mathematics and Physics Centre, Xi'an Jiaotong-Liverpool University, 111 Ren Ai Road, Suzhou, Jiangsu 215123, China
^b Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK

ARTICLE INFO

Article history: Received 17 April 2013 Available online 9 January 2014 Communicated by Michel Broué

Keywords: Trivial unit conjecture Group rings Homotopy groups

opy groups

1. Introduction

Let G be a torsion-free group and $\mathbb{Z}G$ the integral group ring. The trivial unit conjecture for G says that any invertible element (unit) of $\mathbb{Z}G$ is of the form $\pm g$ for some $g \in G$ (cf. [6], Chapter 13). For solving such a conjecture, to the author's knowledge, almost all the approaches used are algebraic (cf. [1] and references therein). In this note, we give a homotopy theoretic description of such a conjecture.

Let X be a CW complex with fundamental group $\pi_1(X) = G$. For any integer $d \ge 2$ and map $f: S^d \to X \lor S^d$, we construct a CW complex $Y_f = (X \lor S^d) \cup_f e^{d+1}$. In this note, the following homotopy theoretic characterization is obtained:

 $\label{eq:email} \textit{E-mail addresses: Shengkui.Ye} \ensuremath{\texttt{Qxjtlu.edu.cn}}, \ensuremath{\texttt{Shengkui.Ye}} \ensuremath{\texttt{Qmaths.ox.ac.uk}}.$

ABSTRACT

A homotopy theoretic description is given for trivial unit conjecture in the group ring $\mathbb{Z}G$.

© 2013 Elsevier Inc. All rights reserved.

^{*} Correspondence to: Mathematics and Physics Centre, Xi'an Jiaotong-Liverpool University, 111 Ren Ai Road, Suzhou, Jiangsu 215123, China.

^{0021-8693/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.12.019

Theorem 1. Let G be a torsion-free group. The trivial unit conjecture for G is true if and only if for an Eilenberg–Mac Lane space X = BG, the element $[f] \in \pi_d(X \vee S^d, S^d)$ (the relative homotopy group of the universal covering space) vanishes for some lifting of S^d whenever the inclusion $i_f : X \to Y_f$ is a homotopy equivalence.

All modules considered in this note are left modules. Let \tilde{Y}_f be the universal covering space of Y_f and $C_i(\tilde{Y}_f)$ the *i*-th term of the cellular chain complex of \tilde{Y}_f . By definition, $C_i(\tilde{Y}_f)$ is a free $\mathbb{Z}G$ -module spanned by the set of all *i*-cells. For the inclusion $i_f : X \to Y_f$, we have a cellular map $\tilde{i}_f : \tilde{X} \to \tilde{Y}_f$ which lifts i_f . As the map i_f induces the identity homomorphism on fundamental groups of X and Y_f , we may assume that \tilde{X} is a subspace of \tilde{Y}_f . The relative chain complex $C_*(\tilde{Y}_f, \tilde{X})$ of (\tilde{Y}_f, \tilde{X}) is of the following form

$$0 \to C_{d+1}(\tilde{Y}_f, \tilde{X}) = \mathbb{Z}G \xrightarrow{\partial} C_d(\tilde{Y}_f, \tilde{X}) = \mathbb{Z}G \to 0.$$

This is a chain complex whose terms are all vanishing except for the *d*-th term a free $\mathbb{Z}G$ -module spanned by S^d and the (d + 1)-th term a free $\mathbb{Z}G$ -module spanned by e^{d+1} . Let $\gamma_f = \partial(1) \in \mathbb{Z}G$, the unique element determined by the boundary map ∂ . We give a homotopy theoretic description of units in $\mathbb{Z}G$ as follows.

Lemma 2. Let $\gamma_f \in \mathbb{Z}G$ be the element defined above. Then γ_f is an invertible element if and only if the inclusion $i_f : X \hookrightarrow Y_f$ is a homotopy equivalence.

Proof. All the notations used in this proof are the same as defined before. Suppose that $\gamma_f = \partial(1)$ is an invertible element in $\mathbb{Z}G$. Then ∂ is both injective and surjective, which shows the relative chain complex $C_*(\tilde{Y}_f, \tilde{X})$ is acyclic. This implies that \tilde{i}_f induces an isomorphism between the homology groups $H_i(\tilde{X})$ and $H_i(\tilde{Y}_f)$ for each $i \ge 0$. Since \tilde{X} and \tilde{Y}_f are both simply connected, $\tilde{i}_f : \tilde{X} \to \tilde{Y}_f$ is a homotopy equivalence. Since i_f induces the identity homomorphism on fundamental groups, this shows that $i_f : X \to Y_f$ is a homotopy equivalence by the Whitehead theorem.

Conversely, suppose that $i_f: X \to Y_f$ is a homotopy equivalence. Then $\tilde{i}_f: \tilde{X} \to \tilde{Y}_f$ is a homotopy equivalence, which implies that the relative chain complex $C_*(\tilde{Y}_f, \tilde{X})$ is acyclic. This implies that $\gamma_f = \partial(1)$ has a left inverse. It is a well-known fact that in the integral group ring of a torsion-free group, one-sided invertible element is also two-sided invertible (cf. Corollary 1.9 from [6, p. 38]). This finishes the proof. \Box

Proof of Theorem 1. Let X = BG, the classifying space of G. Suppose that the trivial unit conjecture for G is true. For an integer $d \ge 2$ and a map $f : S^d \to X \vee S^d$, suppose that the CW complex $Y_f = (X \vee S^d) \cup_f e^{d+1}$ has its inclusion $i_f : X \to Y_f$ a homotopy equivalence. By Lemma 2, the element γ_f is a unit. Therefore, $\gamma_f = \pm g$ for some element $g \in G$. As the d-th and (d+1)-th terms of the relative chain complex are free $\mathbb{Z}G$ -modules, we can view them as submodules of $C_i(\tilde{Y})$ (i = d, d + 1 resp.). Since \tilde{X} is a free G-CW complex and S^d is simply connected, the universal covering space $X \vee S^d$ could be taken as the push out the following diagram Download English Version:

https://daneshyari.com/en/article/4584935

Download Persian Version:

https://daneshyari.com/article/4584935

Daneshyari.com