Palindromic width of free nilpotent groups ${ }^{\text {T }}$

Valeriy G. Bardakov ${ }^{\text {a }}$, Krishnendu Gongopadhyay ${ }^{\text {b,* }}$
${ }^{a}$ Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia
${ }^{\text {b }}$ Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S.A.S. Nagar, P.O. Manauli 140306, India

A R T I C L E I N F O

Article history:

Received 16 February 2013
Available online 14 January 2014
Communicated by E.I. Khukhro

MSC:

primary 20 F 18
secondary 20D15, 20E05

A B S T R A C T

In this paper we consider the palindromic width of free nilpotent groups. In particular, we prove that the palindromic width of a finitely generated free nilpotent group is finite. We also prove that the palindromic width of a free abelian-bynilpotent group is finite.
© 2013 Elsevier Inc. All rights reserved.

Keywords:
Palindromic width
Free nilpotent groups

1. Introduction

Let G be a group with a set of generators A. A reduced word in the alphabet $A^{ \pm 1}$ is a palindrome if it reads the same forwards and backwards. The palindromic length $l_{\mathcal{P}}(g)$ of an element g in G is the minimum number k such that g can be expressed as a product of k palindromes. The palindromic width of G with respect to A is defined to be $\mathrm{pw}(G)=$ $\sup _{g \in G} l_{\mathcal{P}}(g)$. In analogy with commutator width of groups (for example see [2-5]), it is a problem of potential interest to study palindromic width of groups. Palindromes

[^0]of free groups have already proved useful in studying various aspects of combinatorial group theory, for example see [8,9,12]. In [6], it was proved that the palindromic width of a non-abelian free group is infinite. This result was generalized in [7] where the authors proved that almost all free products have infinite palindromic width; the only exception is given by the free product of two cyclic groups of order two, when the palindromic width is two. Piggot [13] studied the relationship between primitive words and palindromes in free groups of rank two. It follows from $[6,13]$ that up to conjugacy, a primitive word can always be written as either a palindrome or a product of two palindromes and that certain pairs of palindromes will generate the group. Recently Gilman and Keen $[10,11]$ have used tools from hyperbolic geometry to reprove this result and further have obtained discreteness criteria for two generator subgroups in $\operatorname{PSL}(2, \mathbb{C})$ using the geometry of palindromes. The work of Gilman and Keen indicates a deep connection between palindromic width of groups and geometry.

Let $\mathrm{N}_{n, r}$ be the free r-step nilpotent group of rank n. In this paper we consider the palindromic width of free nilpotent groups. We prove that the palindromic width of a finitely generated free nilpotent group is finite. In fact, we prove that the palindromic width of an arbitrary rank n free nilpotent group is bounded by $3 n$. For the 2 -step free nilpotent groups, we improve this bound. For the groups, $\mathrm{N}_{n, 1}$ and $\mathrm{N}_{2,2}$ we get the exact values of the palindromic width. Our main theorem is the following.

Theorem 1.1. Let $\mathrm{N}_{n, r}$ be the free r-step nilpotent group of rank $n \geqslant 2$. Then the following holds:
(1) The palindromic width $\mathrm{pw}\left(\mathrm{N}_{n, 1}\right)$ of a free abelian group of rank n is equal to n.
(2) For $r \geqslant 2$, $n \leqslant \mathrm{pw}\left(\mathrm{N}_{n, r}\right) \leqslant 3 n$.
(3) $\mathrm{pw}\left(\mathrm{N}_{n, 2}\right) \leqslant 3(n-1)$.

We prove the theorem in Section 3. Along the way, we also prove that $\mathrm{pw}\left(\mathrm{N}_{2,2}\right)=3$. In Section 2, after recalling some basic notions and related basic results, we prove Lemma 2.5 which is a key ingredient in the proof of Theorem 1.1. As a consequence of Lemma 2.5 we also prove that the palindromic width of a free abelian-by-nilpotent group of rank n is bounded by $5 n$, see Proposition 3.7. For the group $N_{3,2}$ it is possible to improve the bound given in (2) of the above theorem. In fact, $4 \leqslant \mathrm{pw}\left(\mathrm{N}_{3,2}\right) \leqslant 6$. A detailed proof of this fact will appear elsewhere. It would be interesting to obtain solutions to the following problems.

Problem 1.

(1) For $n \geqslant 3, r \geqslant 2$, find $\operatorname{pw}\left(\mathrm{N}_{n, r}\right)$.
(2) Construct an algorithm that determines $l_{\mathcal{P}}(g)$ for arbitrary $g \in \mathrm{~N}_{n, r}$.

https://daneshyari.com/en/article/4584944

Download Persian Version:

https://daneshyari.com/article/4584944

Daneshyari.com

[^0]: The authors gratefully acknowledge the support of the Indo-Russian DST-RFBR project grant DST/INT/RFBR/P-137.

 * Corresponding author.

 E-mail addresses: bardakov@math.nsc.ru(V.G. Bardakov), krishnendu@iisermohali.ac.in, krishnendug@gmail.com (K. Gongopadhyay).

