

Palindromic width of free nilpotent groups $\stackrel{\Rightarrow}{\Rightarrow}$

Valeriy G. Bardakov^a, Krishnendu Gongopadhyay^{b,*}

^a Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia
^b Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER)
Mohali, Knowledge City, Sector 81, S.A.S. Nagar, P.O. Manauli 140306, India

ARTICLE INFO

Article history: Received 16 February 2013 Available online 14 January 2014 Communicated by E.I. Khukhro

MSC: primary 20F18 secondary 20D15, 20E05

Keywords: Palindromic width Free nilpotent groups

ABSTRACT

In this paper we consider the palindromic width of free nilpotent groups. In particular, we prove that the palindromic width of a finitely generated free nilpotent group is finite. We also prove that the palindromic width of a free abelian-bynilpotent group is finite.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a group with a set of generators A. A reduced word in the alphabet $A^{\pm 1}$ is a *palindrome* if it reads the same forwards and backwards. The palindromic length $l_{\mathcal{P}}(g)$ of an element g in G is the minimum number k such that g can be expressed as a product of k palindromes. The *palindromic width* of G with respect to A is defined to be pw(G) = $\sup_{g \in G} l_{\mathcal{P}}(g)$. In analogy with commutator width of groups (for example see [2–5]), it is a problem of potential interest to study palindromic width of groups. Palindromes

 $^{^{*}}$ The authors gratefully acknowledge the support of the Indo-Russian DST-RFBR project grant DST/INT/RFBR/P-137.

^{*} Corresponding author.

E-mail addresses: bardakov@math.nsc.ru (V.G. Bardakov), krishnendu@iisermohali.ac.in, krishnendug@gmail.com (K. Gongopadhyay).

of free groups have already proved useful in studying various aspects of combinatorial group theory, for example see [8,9,12]. In [6], it was proved that the palindromic width of a non-abelian free group is infinite. This result was generalized in [7] where the authors proved that almost all free products have infinite palindromic width; the only exception is given by the free product of two cyclic groups of order two, when the palindromic width is two. Piggot [13] studied the relationship between primitive words and palindromes in free groups of rank two. It follows from [6,13] that up to conjugacy, a primitive word can always be written as either a palindrome or a product of two palindromes and that certain pairs of palindromes will generate the group. Recently Gilman and Keen [10,11] have used tools from hyperbolic geometry to reprove this result and further have obtained discreteness criteria for two generator subgroups in PSL(2, \mathbb{C}) using the geometry of palindromes. The work of Gilman and Keen indicates a deep connection between palindromic width of groups and geometry.

Let $N_{n,r}$ be the free *r*-step nilpotent group of rank *n*. In this paper we consider the palindromic width of free nilpotent groups. We prove that the palindromic width of a finitely generated free nilpotent group is finite. In fact, we prove that the palindromic width of an arbitrary rank *n* free nilpotent group is bounded by 3n. For the 2-step free nilpotent groups, we improve this bound. For the groups, $N_{n,1}$ and $N_{2,2}$ we get the exact values of the palindromic width. Our main theorem is the following.

Theorem 1.1. Let $N_{n,r}$ be the free *r*-step nilpotent group of rank $n \ge 2$. Then the following holds:

- (1) The palindromic width $pw(N_{n,1})$ of a free abelian group of rank n is equal to n.
- (2) For $r \ge 2$, $n \le pw(N_{n,r}) \le 3n$.
- (3) $pw(N_{n,2}) \leq 3(n-1).$

We prove the theorem in Section 3. Along the way, we also prove that $pw(N_{2,2}) = 3$. In Section 2, after recalling some basic notions and related basic results, we prove Lemma 2.5 which is a key ingredient in the proof of Theorem 1.1. As a consequence of Lemma 2.5 we also prove that the palindromic width of a free abelian-by-nilpotent group of rank nis bounded by 5n, see Proposition 3.7. For the group $N_{3,2}$ it is possible to improve the bound given in (2) of the above theorem. In fact, $4 \leq pw(N_{3,2}) \leq 6$. A detailed proof of this fact will appear elsewhere. It would be interesting to obtain solutions to the following problems.

Problem 1.

- (1) For $n \ge 3$, $r \ge 2$, find $pw(N_{n,r})$.
- (2) Construct an algorithm that determines $l_{\mathcal{P}}(g)$ for arbitrary $g \in \mathcal{N}_{n,r}$.

Download English Version:

https://daneshyari.com/en/article/4584944

Download Persian Version:

https://daneshyari.com/article/4584944

Daneshyari.com