Self similarity of dihedral tilings

J.-H. Eschenburg ${ }^{\text {a,* }}$, H.J. Rivertz ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
${ }^{\text {b }}$ Sør-Trøndelag University College, Trondheim, Norway

A R T I C L E I N F O

Article history:
Received 10 April 2013
Available online 4 March 2014
Communicated by Michel Broué

MSC:

52C20
52C23
11R18
Keywords:
Penrose type tilings
Cyclotomic fields
Galois group
Units
Regulator

A B S T R A C T

We show that for any prime number $n=2 r+1 \geqslant 5$ there exist r planar tilings with self-similar vertex set and the symmetry of a regular n-gon (D_{n}-symmetry). The tiles are the rhombi with angle $\pi k / n$ for $k=1, \ldots, r$.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Tilings of euclidean plane with a dihedral $\left(D_{n^{-}}\right)$symmetry for $n \neq 2,3,4,6$ must be aperiodic, due to the crystallographic restriction: there is no translation preserving the tiling. However, there can be another type of ordering: self similarity. A tiling of the full plane \mathbb{R}^{2} is called self similar if its vertex set V contains a subset V^{\prime} which is a homothetic image of V, i.e. $V^{\prime}=\lambda V$ for some $\lambda>1$. It is our aim to show the following theorem:

[^0]Theorem 1. When $n \geqslant 5$ is a prime, there exist self similar planar tilings with D_{n}-symmetry.

The case $n=5$ consists of the two well known Penrose tilings with exact pentagon symmetry [3,1], while $n=7,11$ have been discussed in [2]. Pictures of the $n=7$ tilings can be found in [2] and [4].

We construct the tilings using the projection method [1], see also [2]: Our tilings are obtained by orthogonal projection of a subset of the grid $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ onto a 2-dimensional affine subspace E; the projected subset is the intersection of \mathbb{Z}^{n} with the so called strip $\Sigma_{E}=E+I^{n}$ with $I=(0,1)$. The vertex set of the tiling is $V_{E}=\pi_{E}\left(\mathbb{Z}^{n} \cap \Sigma_{E}\right)$, and the tiles are projections of unit squares in \mathbb{R}^{n} all of whose vertices belong to $\mathbb{Z}^{n} \cap \Sigma_{E}$. This tiling is well defined provided that E is in general position with respect to \mathbb{Z}^{n}, i.e. for every point of E at most 2 coordinates can be integers [1,5]. Assigning the n vertices of an n-gon to the standard unit vectors e_{1}, \ldots, e_{n} of \mathbb{R}^{n}, we obtain a linear action of the dihedral group D_{n} onto \mathbb{R}^{n}. If $n=2 r+1$ is odd, this representation decomposes into a 1-dimensional fixed space $\mathbb{R} d$ with $d=\sum_{i} e_{i}$ and irreducible 2-dimensional subrepresentations E_{1}, \ldots, E_{r}. We will choose E parallel to E_{1}, say $E=E_{1}+a$ for some $a \in \mathbb{R}^{n}$. This tiling will have local D_{n} symmetry at many places. But in order to have global D_{n} symmetry we will choose $a=\frac{k}{n} d$ where $1 \leqslant k \leqslant n-1$.

The self similarity will be caused by a self adjoint D_{n}-invariant integer matrix S ("inflation matrix") which is integer invertible on $W:=d^{\perp}$ (i.e. there is another D_{n}-invariant symmetric integer matrix T with $S T=T S=I$ on W) and which has eigenvalues λ_{i} with $\left|\lambda_{i}\right|>1$ on each 2 -dimensional component E_{i} of W for $i \geqslant 2$. Then S acts as a contraction on E_{1} and an expansion on the other E_{i}, and we have ${ }^{1} S(\Sigma) \supset \Sigma^{\prime}$ where $\Sigma^{\prime}=E^{\prime}+I^{n}$ with $E^{\prime}=S(E)=E_{1}+S a$. Projecting the grid points in Σ^{\prime} onto E^{\prime} yields the point set $V_{E^{\prime}}$. By projecting the grid points in $S(\Sigma)$ onto E^{\prime} we obtain a larger point set $S\left(V_{E}\right) \supset V_{E^{\prime}}$. Since E_{1} is an eigenspace of S, the set $S\left(V_{E}\right)$ is homothetic to V_{E}. When V_{E} is invariant under D_{n}, so is also $S\left(V_{E}\right)$ and $V_{E^{\prime}}$. There are only finitely many of such tilings with full D_{n}-symmetry. Therefore, passing to a power of S if necessary, we can arrange for $V_{E^{\prime}}$ and V_{E} to be homothetic. This reduces the proof of the theorem to the construction of such a matrix S.

The D_{n}-invariant tilings are not so special as it seems; in fact any tiling corresponding to $E_{1}+a$ with $a \in d^{\perp}$ is almost isometric to any of the symmetric tilings, as will be explained in Theorem 2 below.

2. Dihedral tilings

Let D_{n} denote the group of all rotations and reflections of a regular n-gon (Dihedral group). It acts by certain permutations on the set of vertices of the n-gon which may

[^1]
https://daneshyari.com/en/article/4584974

Download Persian Version:

https://daneshyari.com/article/4584974

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: eschenburg@math.uni-augsburg.de (J.-H. Eschenburg), hans.j.rivertz@hist.no (H.J. Rivertz).

[^1]: ${ }^{1}$ More precisely, since S is not integer invertible on $\mathbb{R} d$, we might have to pass to a suitable power of S, see [2].

