

Contents lists available at ScienceDirect

Journal of Algebra

Weierstrass semigroups on double covers of genus 4 curves

Seon Jeong Kim^a, Jiryo Komeda^{b,*}

ARTICLE INFO

Article history: Received 20 May 2012 Available online 4 March 2014 Communicated by Steven Dale Cutkosky

MSC: 14H55 14H30 14H45

Keywords:

Weierstrass semigroup of a point Double cover of a curve Curve of genus 4

ABSTRACT

Let C be a complete non-singular irreducible curve of genus 4 over an algebraically closed field of characteristic 0. We determine all possible Weierstrass semigroups of ramification points on double covers of C which have genus greater than 11. Moreover, we construct double covers with ramification points whose Weierstrass semigroups are the possible ones.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A submonoid H of the additive monoid \mathbb{N}_0 of non-negative integers is called a numerical semigroup if its complement $\mathbb{N}_0 \backslash H$ is a finite set. The cardinality of $\mathbb{N}_0 \backslash H$ is called the genus of H, which is denoted by g(H). Let C be a complete non-singular irreducible

E-mail addresses: skim@gnu.ac.kr (S.J. Kim), komeda@gen.kanagawa-it.ac.jp (J. Komeda).

^a Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, Republic of Korea

Department of Mathematics, Kanagawa Institute of Technology, Atsugi, 243-0292, Japan

 $^{^{\}circ}$ The first author is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0027246). The second author is partially supported by Grant-in-Aid for Scientific Research (24540057), Japan Society for the Promotion of Science.

^{*} Corresponding author.

curve over an algebraically closed field k of characteristic 0, which is called a *curve* in this paper. Let k(C) be the field of rational functions on C. For a point P of C, we set

$$H(P) = \{ \alpha \in \mathbb{N}_0 \mid \text{ there exists } f \in k(C) \text{ with } (f)_{\infty} = \alpha P \},$$

which is called the Weierstrass semigroup of P. It is known that the Weierstrass semigroup of a point on a curve of genus g is a numerical semigroup of genus g.

Let $\pi: \tilde{C} \longrightarrow C$ be a double covering of a curve. We are interested in the Weierstrass semigroup $H(\tilde{P})$ of a ramification point \tilde{P} on the double cover \tilde{C} of C. A numerical semigroup is said to be of double covering type, if it is such a Weierstrass semigroup $H(\tilde{P})$. For a numerical semigroup \tilde{H} we denote by $d_2(\tilde{H})$ the set consisting of the elements $\tilde{h}/2$ with even $\tilde{h} \in \tilde{H}$, which becomes a numerical semigroup. Using this notation we have $d_2(H(\tilde{P})) = H(\pi(\tilde{P}))$. Let \tilde{g} be the genus of \tilde{C} . If C is the projective line, then \tilde{P} is a Weierstrass point on the hyperelliptic curve \tilde{C} for any $\tilde{g} \geq 2$. Hence, the semigroup $H(\tilde{P})$ is generated by 2 and $2\tilde{g}+1$. If C is an elliptic curve, then the semigroup $H(\tilde{P})$ is either (3,4,5) or (3,4) or (4,5,6,7) or $(4,6,2\tilde{g}-3)$ with $\tilde{g} \geq 4$ or $(4,6,2\tilde{g}-1,2\tilde{g}+1)$ with $\tilde{g} \geq 4$. Here for any positive integers a_1, a_2, \ldots, a_n we denote by $\langle a_1, a_2, \ldots, a_n \rangle$ the additive monoid generated by a_1, a_2, \ldots, a_n . Conversely, there is a double cover of an elliptic curve with a ramification point whose Weierstrass semigroup is any semigroup of the above ones (for example, see [2,3]). Oliveira and Pimentel [8] studied Weierstrass semigroups $H(\tilde{P})$ in the case where the genus of C is 2. They showed that for a semigroup $\tilde{H} = \langle 6, 8, 10, n \rangle$ with an odd number $n \geq 11$ there exists a double covering $\pi : \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} such that $H(\tilde{P}) = \tilde{H}$. Moreover, in [3] we showed that all numerical semigroups \tilde{H} of genus ≥ 6 satisfying $g(d_2(\tilde{H})) = 2$ are of double covering type. In [5] we proved that every numerical semigroup \tilde{H} of genus ≥ 9 with $g(d_2(\tilde{H})) = 3$ is of double covering type.

In this paper we will study the Weierstrass semigroups of ramification points on double covers of genus 4 curves. Namely, we prove

Main Theorem. Let H be a numerical semigroup of genus 4 and \tilde{H} a numerical semigroup with $d_2(\tilde{H}) = H$. If $g(\tilde{H}) \ge 12$, then \tilde{H} is of double covering type.

But we note that the Main Theorem does not hold in the case where $g \ge 5$. That is to say, for any $g \ge 5$ there are numerical semigroups \tilde{H} with $g(d_2(\tilde{H})) = g$ and $g(\tilde{H}) \ge 3g$ which are not of double covering type (see [4]).

In Section 2 we will treat known facts and new results which work well for numerical semigroups of any genus with some properties. We know that a numerical semigroup of genus 4 is either $\langle 2,9 \rangle$ or $\langle 3,5 \rangle$ or $\langle 3,7,8 \rangle$ or $\langle 4,5,6 \rangle$ or $\langle 4,5,7 \rangle$ or $\langle 4,6,7,9 \rangle$ or $\langle 5,6,7,8,9 \rangle$. By [7] any numerical semigroup \tilde{H} with $d_2(\tilde{H}) = \langle 2,9 \rangle$ is of double covering type. From Section 3 to Section 8 we will prove the Main Theorem for each numerical semigroup \tilde{H} with $g(d_2(\tilde{H})) = 4$ and $d_2(\tilde{H}) \neq \langle 2,9 \rangle$.

Download English Version:

https://daneshyari.com/en/article/4584979

Download Persian Version:

https://daneshyari.com/article/4584979

<u>Daneshyari.com</u>