

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The mirabolic Hecke algebra

Daniele Rosso

University of Ottawa, Department of Mathematics and Statistics, 585 King Edward, Ottawa, ON, K1N 6N5, Canada

ARTICLE INFO

Article history: Received 6 December 2013 Available online 4 March 2014 Communicated by Changchang Xi

MSC: 20C08

Keywords: Hecke algebra Convolution Flag varieties Cyclotomic Hecke algebra

ABSTRACT

The Iwahori–Hecke algebra of the symmetric group is the convolution algebra of GL_n -invariant functions on the variety of pairs of complete flags over a finite field. Considering convolution on the space of triples of two flags and a vector we obtain the mirabolic Hecke algebra R_n , which had originally been described by Solomon. In this paper we give a new presentation for R_n , which shows that it is a quotient of a cyclotomic Hecke algebra as defined by Ariki and Koike. From this we recover the results of Siegel about the representations of R_n . We use Jucys–Murphy elements to describe the center of R_n and to give a \mathfrak{gl}_{∞} -structure on the Grothendieck group of the category of its representations, giving 'mirabolic' analogues of classical results about the Iwahori–Hecke algebra. We also outline a strategy towards a proof of the conjecture that the mirabolic Hecke algebra is a cellular algebra.

@ 2014 Elsevier Inc. All rights reserved.

ALGEBRA

1. Introduction

1.1. The Iwahori–Hecke algebra H_n of the symmetric group S_n is an example of a convolution algebra. The basic setting for convolution is the following: we have a finite

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2014.02.008} 0021\mbox{-}8693/\mbox{©} 2014 Elsevier Inc. All rights reserved.$

E-mail address: drosso@uottawa.ca.

set X and we take $E = \mathbb{C}(X \times X)$ to be the vector space of all complex valued functions on $X \times X$. Then given two functions f, g we define their convolution to be

$$(f * g)(x, y) = \sum_{z \in X} f(x, z)g(z, y).$$
 (1)

This defines an associative product on E. If G is a group acting on X, then we have the diagonal action of G on $X \times X$ which induces a G-action on E. We can then consider the algebra $E^G \simeq \mathbb{C}(G \setminus X \times X)$ of functions that are invariant under the group action, with the same convolution product of (1). Let $G = \operatorname{GL}_n(\mathbb{F}_q)$, and B be the subgroup of upper triangular matrices. Then we can take X = G/B, the space of all complete flags in \mathbb{F}_q^n . From the Bruhat decomposition, it follows that the G-orbits on $G/B \times G/B$ are parametrized by the symmetric group S_n . As we will discuss in Section 2, for X = G/B, the resulting convolution algebra is the Iwahori–Hecke algebra of S_n .

The action of G on the space $G/B \times G/B \times \mathbb{F}_q^n$ still has finitely many orbits. This follows from the results of [21] but it is also a special case of the work of Magyar, Weyman and Zelevinsky, which in [15] have classified all cases in which the G action on triples of flags has finitely many orbits. We can then define a convolution product on the space of invariant functions $\mathbb{C}(G/B \times G/B \times \mathbb{F}_q^n)^G$. We call the resulting algebra R_n the *mirabolic Hecke algebra*.

1.2. For a field \Bbbk , the action of $\operatorname{GL}_n(\Bbbk)$ on varieties of flags and pairs of flags is a classical topic of study. Recently, generalizations of these constructions have been appearing, including the extra data of a vector or a line. This is what we mean by the 'mirabolic' setting. The name comes from the mirabolic subgroup $P \subset \operatorname{GL}_n(\Bbbk)$, which is the subgroup that fixes a nonzero vector in $V = \Bbbk^n$. This is because in general, for a *G*-variety *X*, the *P*-orbits on *X* are obviously in a 1–1 correspondence with *G*-orbits on $X \times (V \setminus \{0\})$.

One case in which such a generalization arises is the following. If G/B is the variety of complete flags in V, then it is interesting to study the action of G on $G/B \times G/B \times V$. One reason why this is important is because \mathfrak{D} -modules on $G/B \times G/B \times V$ are closely related to mirabolic character \mathfrak{D} -modules. These are certain \mathfrak{D} -modules on $G \times V$, which arise when studying the spherical trigonometric Cherednik algebra, see [8].

Another example is the work of Achar and Henderson [1] extending the nilpotent cone $\mathcal{N} \subset \operatorname{End}(V)$ to the 'enhanced nilpotent cone' $\mathcal{N} \times V$. Here the group G acts on V in the obvious way and on \mathcal{N} by conjugation. Their motivation was the work of S. Kato [14], which had introduced the 'exotic nilpotent cone', of which $\mathcal{N} \times V$ is a simplification. Kato uses the exotic nilpotent cone to establish an 'exotic' Springer correspondence and to give a geometric construction of the affine Hecke algebra of type $C_n^{(1)}$.

1.3. The focus of the present paper is the 'mirabolic' Hecke algebra R_n . This had originally been defined, in different terms, by Solomon in [21], and its irreducible

Download English Version:

https://daneshyari.com/en/article/4584981

Download Persian Version:

https://daneshyari.com/article/4584981

Daneshyari.com