The closed cone of a rational series is rational polyhedral

Shunichi Kimura ${ }^{\text {a }}$, Shigeru Kuroda ${ }^{\text {b }}$, Nobuyoshi Takahashi ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
${ }^{\mathrm{b}}$ Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan

A R T I C L E I N F O

Article history:

Received 27 March 2013
Available online 5 March 2014
Communicated by Kazuhiko Kurano

MSC:

13 J 05
14 C 05

Keywords:
Rationality
Power series
Euler-Chow series

Abstract

For a multivariate power series f, let $\operatorname{Cone}(f)$ denote the cone generated by the exponents of the monomials with nonzero coefficients. Assume that f is an expansion of a rational function p / q with $\operatorname{gcd}(p, q)=1$. Then we prove that the closure $\overline{\operatorname{Cone}}(f)$ is equal to Cone $(p)+\operatorname{Cone}(q)$. As applications, we show the irrationality of Euler-Chow series of certain algebraic varieties.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In various branches of mathematics naturally arise multivariate generating series, and sometimes they are rational.

[^0]The Euler-Chow series $E C_{X, p}$ defined by J. Elizondo is one such example. Here X is an algebraic variety and p is a non-negative integer, and $E C_{X, p}$ is defined as the generating series of the Euler characteristics of Chow varieties of X parametrizing p-dimensional effective cycles. Roughly speaking, it can be considered as a power series in n variables, where n is the rank of $H_{2 p}(X, \mathbb{Z})$. Elizondo [4] proved that $E C_{X, p}$ is rational for any simplicial toric variety X, and asked whether it is rational for an arbitrary variety X or not. He proposed the following possible counterexample: Let X be the blow-up of \mathbb{P}^{2} at 9 points in general position. Then the pseudo-effective cone of X is not polyhedral, and so it seems unlikely that the Euler-Chow series $E C_{X, 1}(t)=\sum_{D \in \operatorname{Pic}(X)} h^{0}(D) t^{D}$ could be rational.

In this paper, we show that this reasoning does work. Let k be a field. For a power series $f=\sum a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, let

$$
\operatorname{Supp}(f):=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid a_{i_{1}, \ldots, i_{n}} \neq 0\right\} \subset \mathbb{Z}^{n}
$$

and

$$
\operatorname{Cone}(f):=\sum_{\mathbf{m} \in \operatorname{Supp}(f)} \mathbb{R}_{\geqslant 0} \mathbf{m} \subset \mathbb{R}^{n}
$$

Then we show that the closure $\overline{\operatorname{Cone}}(f)$ is rational polyhedral when f is a rational function. More precisely, the following holds.

Theorem 1.1. Assume that there exists a nonzero polynomial $q \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $p:=q f$ belongs to $k\left[x_{1}, \ldots, x_{n}\right]$. Choose such a polynomial q with the property that $\operatorname{gcd}(p, q)=1$. Then $q(0) \neq 0$,

$$
\begin{equation*}
f=\frac{p}{q(0)} \sum_{i=0}^{\infty}\left(-\frac{q-q(0)}{q(0)}\right)^{i} \tag{1.1}
\end{equation*}
$$

and $\overline{\text { Cone }}(f)$ is equal to Cone $(p)+\operatorname{Cone}(q)$.
This assertion is so natural that one would expect it to be already known, but we could not find it stated anywhere.

Remark 1.2. Let us list a few related directions of works.
(1) In the context of tropical geometry, [3] studied the relation between the Newton polytope of a polynomial q, the tropical variety associated to q and the set of different expansions of $1 / q$. More generally, Puiseux expansions of an algebraic function f are studied in [7], for example. See Remark 2.1 for a little more detail.
(2) For an algebraic power series over a finite field, the set of exponents with vanishing coefficients form a " p-automatic set." See [1].

https://daneshyari.com/en/article/4584984

Download Persian Version:
https://daneshyari.com/article/4584984

Daneshyari.com

[^0]: सhe first author is partially supported by JSPS Grant-in-Aid for Scientific Research 24654007 and 25287007. The second author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 24740022. The third author is partially supported by JSPS Grant-in-Aid for Scientific Research 23540050.

 * Corresponding author.

 E-mail addresses: kimura@math.sci.hiroshima-u.ac.jp (S. Kimura), kuroda@tmu.ac.jp (S. Kuroda), takahasi@math.sci.hiroshima-u.ac.jp (N. Takahashi).

