

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Asymptotics of H-identities for associative algebras with an H-invariant radical $\stackrel{\triangle}{=}$

A.S. Gordienko

Vrije Universiteit Brussel, Belgium

ARTICLE INFO

Article history: Received 6 December 2012 Available online 31 July 2013 Communicated by Louis Rowen

MSC:

primary 16R10 secondary 16R50, 16W20, 16W22, 16W25, 16T05, 20C30

Keywords:
Associative algebra
Polynomial identity
Derivation
Group action
Hopf algebra
H-module algebra
Codimension
Cocharacter
Young diagram

ABSTRACT

We prove the existence of the Hopf PI-exponent for finite dimensional associative algebras A with a generalized Hopf action of an associative algebra H with 1 over an algebraically closed field of characteristic 0 assuming only the invariance of the Jacobson radical J(A) under the H-action and the existence of the decomposition of A/J(A) into the sum of H-simple algebras. As a consequence, we show that the analog of Amitsur's conjecture holds for G-codimensions of finite dimensional associative algebras over a field of characteristic 0 with an action of an arbitrary group G by automorphisms and anti-automorphisms and for differential codimensions of finite dimensional associative algebras with an action of an arbitrary Lie algebra by derivations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Amitsur's conjecture on asymptotic behaviour of codimensions of ordinary polynomial identities was proved by A. Giambruno and M.V. Zaicev [10, Theorem 6.5.2] in 1999.

When an algebra is endowed with a grading, an action of a group G by automorphisms and anti-automorphisms, an action of a Lie algebra by derivations or a structure of an H-module algebra for some Hopf algebra H, it is natural to consider, respectively, graded, G-, differential or

E-mail address: alexey.gordienko@vub.ac.be.

[☆] Supported by Fonds Wetenschappelijk Onderzoek—Vlaanderen Pegasus Marie Curie post doctoral fellowship (Belgium) and RFBR grant 13-01-00234a (Russia).

H-identities [4–6,14]. The analog of Amitsur's conjecture for finite dimensional associative algebras with a \mathbb{Z}_2 -action was proved by A. Giambruno and M.V. Zaicev [10, Theorem 10.8.4] in 1999. In 2010–2011, E. Aljadeff, A. Giambruno, and D. La Mattina [1,2,9] obtained the validity of the analog of Amitsur's conjecture for associative PI-algebras with an action of a finite Abelian group by automorphisms as a particular case of their result for graded algebras.

In 2012, the analog of the conjecture was proved [12,13] for finite dimensional associative algebras with a rational action of a reductive affine algebraic group by automorphisms and antiautomorphisms, with an action of a finite dimensional semisimple Lie algebra by derivations or an action of a semisimple Hopf algebra. These results were obtained as a consequence of [12, Theorem 5] and [13, Theorem 6], where the authors considered finite dimensional associative algebras with a generalized Hopf action of an associative algebra *H* with 1. In the proof, they required the existence of an *H*-invariant Wedderburn–Mal'cev and Wedderburn–Artin decompositions. Here we remove the first restriction. This enables us to prove the analog of Amitsur's conjecture for *G*-codimensions of finite dimensional associative algebras with an action of an arbitrary group *G* by automorphisms and anti-automorphisms and for differential codimensions of finite dimensional associative algebras with an action of an arbitrary Lie algebra by derivations.

2. Polynomial *H*-identities and their codimensions

Let H be a Hopf algebra over a field F. An algebra A over F is an H-module algebra or an algebra with an H-action, if A is endowed with a homomorphism $H \to \operatorname{End}_F(A)$ such that $h(ab) = (h_{(1)}a)(h_{(2)}b)$ for all $h \in H$, $a,b \in A$. Here we use Sweedler's notation $\Delta h = h_{(1)} \otimes h_{(2)}$ where Δ is the comultiplication in H.

In order to embrace an action of a group by anti-automorphisms, we consider a generalized Hopf action [6, Section 3].

Let H be an associative algebra with 1 over F. We say that an associative algebra A is an algebra with a *generalized H-action* if A is endowed with a homomorphism $H \to \operatorname{End}_F(A)$ and for every $h \in H$ there exist $h'_i, h''_i, h'''_i, h'''_i \in H$ such that

$$h(ab) = \sum_{i} \left(\left(h'_{i} a \right) \left(h''_{i} b \right) + \left(h'''_{i} b \right) \left(h''''_{i} a \right) \right) \quad \text{for all } a, b \in A.$$
 (1)

Choose a basis $(\gamma_{\beta})_{\beta\in\Lambda}$ in H and denote by $F\langle X|H\rangle$ the free associative algebra over F with free formal generators $x_i^{\gamma_{\beta}}$, $\beta\in\Lambda$, $i\in\mathbb{N}$. Let $x_i^h:=\sum_{\beta\in\Lambda}\alpha_{\beta}x_i^{\gamma_{\beta}}$ for $h=\sum_{\beta\in\Lambda}\alpha_{\beta}\gamma_{\beta}$, $\alpha_{\beta}\in F$, where only finite number of α_{β} are nonzero. Here $X:=\{x_1,x_2,x_3,\ldots\}$, $x_j:=x_j^1$, $1\in H$. We refer to the elements of $F\langle X|H\rangle$ as H-polynomials. Note that here we do not consider any H-action on $F\langle X|H\rangle$.

Let A be an associative algebra with a generalized H-action. Any map $\psi: X \to A$ has a unique homomorphic extension $\bar{\psi}: F\langle X|H\rangle \to A$ such that $\bar{\psi}(x_i^h) = h\psi(x_i)$ for all $i \in \mathbb{N}$ and $h \in H$. An H-polynomial $f \in F\langle X|H\rangle$ is an H-identity of A if $\bar{\psi}(f) = 0$ for all maps $\psi: X \to A$. In other words, $f(x_1, x_2, \ldots, x_n)$ is an H-identity of A if and only if $f(a_1, a_2, \ldots, a_n) = 0$ for any $a_i \in A$. In this case we write $f \equiv 0$. The set $\mathrm{Id}^H(A)$ of all H-identities of A is an ideal of $F\langle X|H\rangle$. Note that our definition of $F\langle X|H\rangle$ depends on the choice of the basis $(\gamma_\beta)_{\beta \in A}$ in H. However such algebras can be identified in the natural way, and $\mathrm{Id}^H(A)$ is the same.

Denote by P_n^H the space of all multilinear H-polynomials in $x_1, \ldots, x_n, n \in \mathbb{N}$, i.e.

$$P_n^H = \langle x_{\sigma(1)}^{h_1} x_{\sigma(2)}^{h_2} \dots x_{\sigma(n)}^{h_n} \mid h_i \in H, \ \sigma \in S_n \rangle_F \subset F \langle X | H \rangle.$$

Then the number $c_n^H(A) := \dim(\frac{P_n^H}{P_n^H \cap \operatorname{Id}^H(A)})$ is called the nth codimension of polynomial <math>H-identities or the nth H-codimension of A.

The analog of Amitsur's conjecture for *H*-codimensions of *A* can be formulated as follows.

Download English Version:

https://daneshyari.com/en/article/4585011

Download Persian Version:

https://daneshyari.com/article/4585011

<u>Daneshyari.com</u>