

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Connected Hopf algebras of dimension p^2

Xingting Wang¹

Department of Mathematics, University of Washington, Seattle, WA 98195, United States

ARTICLE INFO

Article history: Received 10 August 2012 Available online 29 June 2013 Communicated by Nicolás Andruskiewitsch

MSC: 16T05 16S30

Keywords: Hopf algebras Lie algebras Connected Coradically graded Cocommutative

ABSTRACT

Let *H* be a finite-dimensional connected Hopf algebra over an algebraically closed field **k** of characteristic p > 0. We provide the algebra structure of the associated graded Hopf algebra gr *H*. Then, we study the case when *H* is generated by a Hopf subalgebra *K* and another element and the case when *H* is cocommutative. When *H* is a restricted universal enveloping algebra, we give a specific basis for the second term of the Hochschild cohomology of the coalgebra *H* with coefficients in the trivial *H*-bicomodule **k**. Finally, we classify all connected Hopf algebras of dimension p^2 over **k**.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let **k** denote a base field, algebraically closed of characteristic p > 0. In [5], all graded cocommutative connected Hopf algebras of dimension less than or equal to p^3 are classified by using W.M. Singer's theory of extensions of connected Hopf algebras [13]. In this paper, we classify all connected Hopf algebras of dimension p^2 over **k**. We use the theories of restricted Lie algebras and Hochschild cohomology of coalgebras for restricted universal enveloping algebras.

Let *H* denote a finite-dimensional connected Hopf algebra in the sense of [9, Def. 5.1.5] with primitive space P(H), and *K* be a Hopf subalgebra of *H*. In Section 2, basic definitions related to and properties of *H* are briefly reviewed. In particular, we describe a few concepts concerning the inclusion $K \subseteq H$. We say that the *p*-index of *K* in *H* is n - m if dim $K = p^m$ and dim $H = p^n$. The notion of the first order of the inclusion and a level-one inclusion are also given in Definition 2.3.

0021-8693/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.06.008

E-mail address: xingting@uw.edu.

¹ Research of the author was partially supported by the US National Science Foundation.

In Section 3, the algebra structure of a finite-dimensional connected coradically graded Hopf algebra is obtained (Theorem 3.1) based on a result for algebras representing finite connected group schemes over **k**. It implies that the associated graded Hopf algebra gr H is isomorphic to as algebras

$$\mathbf{k}[x_1, x_2, \dots, x_d]/(x_1^p, x_2^p, \dots, x_d^p)$$

for some $d \ge 0$.

Section 4 concerns a simple case when H is generated by K and another element x. Suppose the p-index of K in H is d. Under an additional assumption, the basis of H as a left K-module is given in terms of the powers of x (Theorem 4.5). Moreover, if K is normal in H [9, Def. 3.4.1], then x satisfies a polynomial equation as follows:

$$x^{p^d} + \sum_{i=0}^{d-1} a_i x^{p^i} + b = 0$$

for some $a_i \in \mathbf{k}$ and $b \in K$.

Section 5 deals with the special case when *H* is cocommutative. It is proved in Proposition 5.2 that such Hopf algebra *H* is equipped with a series of normal Hopf subalgebras $\mathbf{k} = N_0 \subset N_1 \subset N_2 \subset \cdots \subset N_n = H$ satisfying certain properties. If we apply these properties to the case when P(*H*) is one-dimensional, then we have N_1 is generated by P(*H*) and each N_i has *p*-index one in N_{i+1} (Corollary 5.3). In Theorem 5.4, we give locality criterion for *H* in terms of its primitive elements. This result, after dualization, is equivalent to a criteria for unipotency of finite connected group schemes over \mathbf{k} , as shown in Remark 5.5.

In Section 6, we take the Hopf subalgebra $K = u(\mathfrak{g})$, the restricted universal enveloping algebra of some finite-dimensional restricted Lie algebra \mathfrak{g} . We consider the Hochschild cohomology of the coalgebra K with coefficients in the trivial bicomodule \mathbf{k} , namely $H^{\bullet}(\mathbf{k}, K)$. Then the Hochschild cohomology can be computed as the homology of the cobar construction of K. In Proposition 6.2, we give a specific basis for $H^2(\mathbf{k}, K)$. We further show, in Lemma 6.5, that $\bigoplus_{n \ge 0} H^n(\mathbf{k}, K)$ is a graded restricted \mathfrak{g} -module via the adjoint map. When the inclusion $K \subseteq H$ has first order $n \ge 2$, the differential d^1 in the cobar construction of H induces a restricted \mathfrak{g} -module map from H_n into $H^2(\mathbf{k}, K)$, whose kernel is K_n (Theorem 6.6). Concluded in Theorem 6.7, if $K \neq H$, we can find some $x \in H \setminus K$ with the following comultiplication

$$\Delta(x) = x \otimes 1 + 1 \otimes x + \omega \left(\sum_{i} \alpha_{i} x_{i} \right) + \sum_{j < k} \alpha_{jk} x_{j} \otimes x_{k}$$

where $\{x_i\}$ is a basis for g.

Finally, the classification of connected Hopf algebras of dimension p^2 over **k** is accomplished in Section 7. Assume dim $H = p^2$. We apply results on H from previous sections, i.e., Corollary 5.3 and Theorem 6.7. The main result is stated in Theorem 7.4 and divided into two cases. When dim P(H) = 2, based on the classification of two-dimensional Lie algebras with restricted maps (see Appendix A), there are five non-isomorphic classes

(1) $\mathbf{k}[x, y]/(x^p, y^p)$,

- (2) $\mathbf{k}[x, y]/(x^p x, y^p)$,
- (3) $\mathbf{k}[x, y]/(x^p y, y^p)$,
- (4) $\mathbf{k}[x, y]/(x^p x, y^p y)$,
- (5) $\mathbf{k}(x, y)/([x, y] y, x^p x, y^p)$,

where *x*, *y* are primitive. When dim P(H) = 1, *H* must be commutative and there are three non-isomorphic classes

Download English Version:

https://daneshyari.com/en/article/4585047

Download Persian Version:

https://daneshyari.com/article/4585047

Daneshyari.com