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We classify irreducible representations of the special linear groups
in positive characteristic with small weight multiplicities with
respect to the group rank and give estimates for the maximal
weight multiplicities. For the natural embeddings of the classical
groups, inductive systems of representations with totally bounded
weight multiplicities are classified. An analogue of the Steinberg
tensor product theorem for arbitrary indecomposable inductive
systems for such embeddings is proved.
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1. Introduction

In what follows K is an algebraically closed field of characteristic p > 0; Gn is a classical algebraic
group of rank n over K ; Irr Gn is the set of all rational irreducible representations (or simple mod-
ules) of Gn up to equivalence, Irrp Gn ⊂ Irr Gn is the subset of p-restricted ones; Irr M ⊂ Irr Gn is the
set of composition factors ofa module M (disregarding the multiplicities), ω(M) is the highest weight
of a simple module M; L(ω) is the simple Gn-module with highest weight ω; ωn

1, . . . ,ωn
n are the

fundamental weights of Gn; ωn
0 = ωn

n+1 = 0 by convention. A weight
∑n

i=1 aiω
n
i is p-restricted if all
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ai < p. By the weight degree of a module M we mean the maximal dimension of the weight subspaces
in M , i.e.

wdeg M = max
μ∈Λ(M)

dim Mμ

where Λ(M) is the set of weights of M . In particular, we say that M has a small weight degree if
wdeg M is small with respect to n.

For the classical algebraic groups modular representations of weight degree 1 were classified
in [19,25]. To state the result, first define the following sets of weights of the group Gn = An(K ),
Bn(K ), Cn(K ), or Dn(K ):

Ωp
(

An(K )
) = {

0,ωn
k , (p − 1 − a)ωn

k + aωn
k+1

∣∣ 0 � k � n, 0 � a � p − 1
}
,

Ωp
(

Bn(K )
) = {

0,ωn
1,ωn

n

}
,

Ωp
(
Cn(K )

) =
{

0,ωn
1,

p − 1

2
ωn

n,ωn
n−1 + p − 3

2
ωn

n

}
(p > 2),

Ωp
(

Dn(K )
) = {

0,ωn
1,ωn

n−1,ω
n
n

}
,

Ω(Gn) =
{

k∑
j=0

p jλ j

∣∣∣ k � 0, λ j ∈ Ωp(Gn)

}
.

Theorem 1.1. (See [19, 6.1], [25, Proposition 2].) Let Gn be a classical algebraic group of rank n � 4 and let M
be a rational simple Gn-module. Assume p > 2 for G = Bn(K ) or Cn(K ). Then wdeg M = 1 if and only if
ω(M) ∈ Ω(Gn).

Obviously, a simple module M is p-restricted with wdeg M = 1 if and only if ω(M) ∈ Ωp(Gn).
The An(K )-modules L((p − 1 − a)ωn

k + aωn
k+1) are truncated symmetric powers of the natural

module [26, Proposition 1.2]. Thus, the only p-restricted modules of weight degree 1 for type A
are the fundamental modules and truncated symmetric powers of the natural module. Recall that
Bn(K ) ∼= Cn(K ) for p = 2 (as abstract groups). So we do not consider groups of type Bn in character-
istic 2. For groups of type Cn in this case the description of irreducible modules of weight degree 1 is
more involved (see details in Section 6).

In this paper we classify irreducible representations of the special linear groups of small weight
degree. For other classical groups this was done by the authors earlier. In particular, it was shown
that for these groups and odd p no irreducible modules M exist with 1 < wdeg M < n − 7.

Theorem 1.2. (See [1, Theorem 1.1], [17, Theorem 1], [18, Theorem 1].) Let n � 8 and let Gn = Bn(K ), Cn(K )

or Dn(K ). Let M be a rational simple Gn-module with ω(M) /∈ Ω(Gn). Suppose that p > 2 for Gn = Bn(K )

or Cn(K ). Then wdeg M � n −4−[n]4 where [n]4 is the residue of n modulo 4. In particular, wdeg M � n −7.

The main case (p > 2 for Gn = Bn(K ) or Dn(K ) and p > 7 for Gn = Cn(K )) was settled in [1];
[17] deals with type D for p = 2; and [18] gives a new proof for type C for all p. For G = Cn(K ) and
p = 2 a new exceptional series of modules with wdeg = 2s appears (see details in Section 6).

Now assume that Gn = An(K ). Let M ∈ Irr Gn , ω(M) = a1ω
n
1 +· · ·+anω

n
n , and M∗ be the dual of M .

Note that ω(M∗) = anω
n
1 + an−1ω

n
2 + · · · + a1ω

n
n and wdeg M = wdeg M∗ . Define the polynomial degree

of M as the polynomial degree of the corresponding polynomial representation of GLn+1(K ), i.e.

pdeg M =
n∑

k=1

kak. (1)



Download English Version:

https://daneshyari.com/en/article/4585072

Download Persian Version:

https://daneshyari.com/article/4585072

Daneshyari.com

https://daneshyari.com/en/article/4585072
https://daneshyari.com/article/4585072
https://daneshyari.com

