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Let g′ and g be isomorphic to any two of the Lie algebras
gl(∞), sl(∞), sp(∞), and so(∞). Let M be a simple tensor g-mo-
dule. We introduce the notion of an embedding g′ ⊂ g of general
tensor type and derive branching laws for triples g′,g, M , where
g′ ⊂ g is an embedding of general tensor type. More precisely,
since M is in general not semisimple as a g′-module, we deter-
mine the socle filtration of M over g′. Due to the description of
embeddings of classical locally finite Lie algebras given by Dimitrov
and Penkov in 2009, our results hold for all possible embeddings
g′ ⊂ g unless g′ ∼= gl(∞).
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1. Introduction

Given an embedding g′ ⊂ g of two Lie algebras and a simple g-module M , the branching problem
is to determine the structure of M as a g′-module. This is a classical problem in the theory of finite-
dimensional Lie algebras. By Weyl’s semisimplicity theorem, when g′ is finite-dimensional semisimple
the branching problem reduces to finding the multiplicity of any simple g′-module M ′ as a direct
summand of M . This is however not a simple task, due to the abundance of possible isomorphism
classes of embeddings g′ ⊂ g (see [3]). Therefore, even for the classical series of Lie algebras explicit
solutions of the branching problem are known only for specific cases. Such solutions are referred to
as branching laws or branching rules and examples can be found in e.g. [10,5].

In this paper we consider the branching problem for the classical locally finite Lie algebras. These
are the Lie algebras gl(∞), sl(∞), sp(∞), and so(∞), and they are defined as unions of the respec-
tive finite-dimensional Lie algebras under the upper-left corner inclusions. Here the situation is quite
different from the finite-dimensional case. On the one hand, the description of the Lie algebra embed-
dings given in [2] is much simpler than the classical description of Dynkin in the finite-dimensional
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case. On the other hand, the modules of interest, called simple tensor modules, are in general not
completely reducible over the subalgebra. Therefore, the branching problem involves more than just
determining the multiplicities of all simple constituents. One has to determine a semisimple filtration
of the given module over the subalgebra and it is a natural choice to work with the socle filtration. In
this way, the goal of the present work is to solve the following branching problem. Given an embed-
ding g′ ⊂ g of two classical locally finite Lie algebras and a simple tensor g-module M , find the socle
filtration of M as a g′-module.

The structure of the paper is as follows. We start by giving some background on locally finite
Lie algebras and by presenting some finite-dimensional branching laws which are used in the paper.
Following the description of embeddings of classical locally finite Lie algebras given in [2], we intro-
duce the notion of an embedding g′ ⊂ g of general tensor type. In the case g′ � gl(∞) this notion
describes all possible embeddings. One of the main results of the paper is Theorem 3.4 which shows
that the branching problem for embeddings of general tensor type can be reduced to branching prob-
lems for embeddings of three simpler types. Then in Section 4 we determine explicitly the branching
laws for these three types of embeddings in the case when g′,g ∼= gl(∞) and M is any simple ten-
sor g-module (Theorems 4.5, 4.9, 4.11). Since all other cases of embeddings follow the same ideas,
we skip the proofs and list the end results in Tables A.1–A.5 in Appendix A.

2. Preliminaries

2.1. The classical locally finite Lie algebras

The ground field is C. A countable-dimensional Lie algebra is called locally finite if every finite
subset of g is contained in a finite-dimensional subalgebra. Equivalently, g is locally finite if it admits
an exhaustion g = ⋃

i∈Z>0
gi where

g1 ⊂ g2 ⊂ · · · ⊂ gi ⊂ · · ·

is a sequence of nested finite-dimensional Lie algebras. The classical locally finite Lie algebras gl(∞),
sl(∞), sp(∞), and so(∞) are defined respectively as gl(∞) = ⋃

i∈Z>0
gl(i), sl(∞) = ⋃

i∈Z>0
sl(i),

sp(∞) = ⋃
i∈Z>0

sp(2i), and so(∞) = ⋃
i∈Z>0

so(i) via the natural inclusions gl(i) ⊂ gl(i + 1), sl(i) ⊂
sl(i + 1), sp(2i) ⊂ sp(2i + 2), and so(i) ⊂ so(i + 1).

Next, we give an equivalent definition of the above four Lie algebras. Let V and V∗ be countable-
dimensional vector spaces over C and let 〈·, ·〉 : V × V∗ →C be a non-degenerate bilinear pairing. The
vector space V ⊗ V∗ is endowed with the structure of an associative algebra such that

(v1 ⊗ w1)(v2 ⊗ w2) = 〈v2, w1〉v1 ⊗ w2

where v1, v2 ∈ V and w1, w2 ∈ V∗ . We denote by gl(V , V∗) the Lie algebra arising from the asso-
ciative algebra V ⊗ V∗ , and by sl(V , V∗) we denote its commutator subalgebra [gl(V , V∗),gl(V , V∗)].
If 〈·, ·〉 : V × V → C is an antisymmetric non-degenerate bilinear form, we define the Lie algebra
gl(V , V ) as above by taking V∗ = V . In this case S2(V ), the second symmetric power of V , is a Lie
subalgebra of gl(V , V ) and we denote it by sp(V ). Similarly, if 〈·, ·〉 : V × V → C is a symmetric
non-degenerate bilinear form, we again define gl(V , V ) by taking V∗ = V and then

∧2
(V ) is a Lie

subalgebra of gl(V , V ), which we denote by so(V ).
The vector spaces V and V∗ are naturally modules over the Lie algebras defined above, such that

(v1 ⊗ w1) · v2 = 〈v2, w1〉v1 and (v2 ⊗ w2) · w1 = −〈v2, w1〉w2 for any v1, v2 ∈ V and w1, w2 ∈ V∗ .
We call them respectively the natural and the conatural representations. In the cases of sp(V ) and
so(V ) we have V = V∗ .

By a result of Mackey [7], there always exist dual bases {ξi}i∈I of V and {ξ∗
i }i∈I of V∗ indexed by a

countable set I , so that 〈ξi, ξ
∗
j 〉 = δi j . Using these bases, we can identify gl(V , V∗) with the Lie algebra

gl(∞). Similarly, sl(V , V∗) ∼= sl(∞), sp(V ) ∼= sp(∞), and so(V ) ∼= so(∞).
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