The Strong Factorial Conjecture

Eric Edo ${ }^{\mathrm{a}, *}$, Arno van den Essen ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ ERIM, University of New Caledonia, BP R4-98851, Nouméa cedex, New Caledonia
${ }^{\mathrm{b}}$ Faculty of Science, Mathematics and Computer Science, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands

A R T I C L E I N F O

Article history:

Received 15 April 2013
Available online 2 October 2013
Communicated by Michel Broué

Keywords:

Polynomial automorphisms
Jacobian Conjecture
Factorial Conjecture
Polydegree
Rigidity Conjecture

Abstract

In this paper, we present an unexpected link between the Factorial Conjecture [8] and Furter's Rigidity Conjecture [13]. The Factorial Conjecture in dimension m asserts that if a polynomial f in m variables X_{i} over \mathbb{C} is such that $\mathcal{L}\left(f^{k}\right)=0$ for all $k \geqslant 1$, then $f=0$, where \mathcal{L} is the \mathbb{C}-linear map from $\mathbb{C}\left[X_{1}, \ldots, X_{m}\right]$ to \mathbb{C} defined by $\mathcal{L}\left(X_{1}^{l_{1}} \cdots X_{m}^{l_{m}}\right)=l_{1}!\cdots l_{m}!$. The Rigidity Conjecture asserts that a univariate polynomial map $a(X)$ with complex coefficients of degree at most $m+1$ such that $a(X) \equiv X \bmod X^{2}$, is equal to X if m consecutive coefficients of the formal inverse (for the composition) of $a(X)$ are zero.

© 2013 Published by Elsevier Inc.

1. Presentation

In Section 2, we recall the Factorial Conjecture from [8]. We give a natural stronger version of this conjecture which gives the title of this paper. We also recall the Rigidity Conjecture from [13]. We present an additive and a multiplicative inversion formula. We use the multiplicative one to prove that the Rigidity Conjecture is a very particular case of the Strong Factorial Conjecture (see Theorem 2.25). As an easy corollary we obtain a new case of the Factorial Conjecture (see Corollary 2.28). In Section 3, we study the Strong Factorial Conjecture in dimension 2. We give a new proof of the Rigidity Conjecture $R(2)$ (see Section 3.1) using the Zeilberger Algorithm (see [16]). We study the case of two monomials (see Section 3.2). In Section 4 (resp. Section 5) we shortly give some historical details about the origin of the Factorial Conjecture (resp. the Rigidity Conjecture).

2. The bridge

In this section, we fix a positive integer $m \in \mathbb{N}_{+}$. By $\mathbb{C}^{[m]}=\mathbb{C}\left[X_{1}, \ldots, X_{m}\right]$, we denote the \mathbb{C}-algebra of polynomials in m variables over \mathbb{C}.

[^0]
2.1. The Strong Factorial Conjecture

We recall the definition of the factorial map (see [8, Definition 1.2]):
Definition 2.1. We denote by $\mathcal{L}: \mathbb{C}^{[m]} \rightarrow \mathbb{C}$ the linear map defined by

$$
\mathcal{L}\left(X_{1}^{l_{1}} \cdots X_{m}^{l_{m}}\right)=l_{1}!\cdots l_{m}!\text { for all } l_{1}, \ldots, l_{m} \in \mathbb{N}
$$

Remark 2.2. Let $\sigma \in \mathfrak{S}_{m}$ be a permutation of the set $\left\{X_{1}, \ldots, X_{m}\right\}$. If we extend σ to an automorphism $\tilde{\sigma}$ of the \mathbb{C}-algebra $\mathbb{C}^{[m]}$, then for all polynomials $f \in \mathbb{C}^{[m]}$, we have $\mathcal{L}(\tilde{\sigma}(f))=\mathcal{L}(f)$.

Remark 2.3. The linear map \mathcal{L} is not compatible with the multiplication. Nevertheless, $\mathcal{L}(f g)=$ $\mathcal{L}(f) \mathcal{L}(g)$ if $f, g \in \mathbb{C}^{[m]}$ are two polynomials such that there exists an $I \subset\{1, \ldots, m\}$ such that $f \in \mathbb{C}\left[X_{i}: i \in I\right]$ and $g \in \mathbb{C}\left[X_{i}: i \notin I\right]$.

We recall the Factorial Conjecture (see [8, Conjecture 4.2]).
Conjecture 2.4 (Factorial Conjecture $F C(m)$). For all $f \in \mathbb{C}^{[m]}$,

$$
\left(\forall k \in \mathbb{N}_{+}\right) \mathcal{L}\left(f^{k}\right)=0 \Rightarrow f=0
$$

To state some partial results about this conjecture it is convenient to introduce the following notation:

Definition 2.5. We define the factorial set as the following subset of $\mathbb{C}^{[m]}$:

$$
F^{[m]}=\left\{f \in \mathbb{C}^{[m]} \backslash\{0\} ;\left(\exists k \in \mathbb{N}_{+}\right) \mathcal{L}\left(f^{k}\right) \neq 0\right\} \cup\{0\}
$$

Remark 2.6. Let $f \in \mathbb{C}^{[m]}$ be a polynomial, we have $f \in F^{[m]}$ if and only if:

$$
\left(\forall k \in \mathbb{N}_{+}\right) \mathcal{L}\left(f^{k}\right)=0 \Rightarrow f=0
$$

In other words, the factorial set $F^{[m]}$ is the set of all polynomials satisfying the Factorial Conjecture $F C(m)$ and this conjecture is equivalent to $F^{[m]}=\mathbb{C}^{[m]}$.

To give a stronger version of this conjecture we introduce the following subsets of $\mathbb{C}^{[m]}$:
Definition 2.7. For all $n \in \mathbb{N}_{+}$, we consider the following subset of $\mathbb{C}^{[m]}$:

$$
F_{n}^{[m]}=\left\{f \in \mathbb{C}^{[m]} \backslash\{0\} ;(\exists k \in\{n, \ldots, n+\mathcal{N}(f)-1\}) \mathcal{L}\left(f^{k}\right) \neq 0\right\} \cup\{0\}
$$

where $\mathcal{N}(f)$ denotes the number of (nonzero) monomials in f. We define the strong factorial set as:

$$
F_{\cap}^{[m]}=\bigcap_{n \in \mathbb{N}_{+}} F_{n}^{[m]} .
$$

Since, for all $n \in \mathbb{N}_{+}$, it's clear that $F_{n}^{[m]} \subset F^{[m]}$, the following conjecture is stronger than the Factorial Conjecture.

https://daneshyari.com/en/article/4585081

Download Persian Version:

https://daneshyari.com/article/4585081

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: edo@univ-nc.nc (E. Edo), essen@math.ru.nl (A. van den Essen).

