

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the unit conjecture for supersoluble group algebras

David A. Craven a, Peter Pappas b,*

ARTICLE INFO

Article history: Received 24 September 2012 Available online 15 August 2013 Communicated by J.T. Stafford

MSC: 16S34 16U60

Keywords: Ring theory Group algebras Unit conjecture

ABSTRACT

We introduce structure theorems for the study of the unit conjecture for group algebras of torsion-free supersoluble groups. Motivated by work of P.M. Cohn we introduce the class of (X,Y,N)-group algebras KG, and following D.S. Passman we define an induced length function $L:KG \to \mathbb{N} \cup \{-\infty\}$ using the fact that G has the infinite dihedral group as a homomorphic image. We develop *splitting theorems* for (X,Y,N)-group algebras, and as an application show that if $\sigma \in KG$ is a unit, then $L(\sigma) = L(\sigma^{-1})$. We extend our analysis of splittings to obtain a canonical *reduced split-form* for all units in (X,Y,N)-group algebras. This leads to the study of group algebras of virtually abelian groups and their representations as subalgebras of suitable matrix rings, where we develop a determinant condition for units in such group algebras. We apply our results to the *fours group*

$$\Gamma = \langle x, y \mid xy^2x^{-1} = y^{-2}, \ yx^2y^{-1} = x^{-2} \rangle$$

and show that over any field K, the group algebra $K\Gamma$ has no non-trivial unit of small L-length. Using this, and the fact that L is equivariant under all $K\Gamma$ -automorphisms obtained K-linearly from Γ -automorphisms, we prove that no subset of the Promislow set $\mathscr{P} \subset \Gamma$ is the support of a non-trivial unit in $K\Gamma$ for any field K. In particular this settles a long-standing question and shows that the Promislow set is itself not the support of a unit in $K\Gamma$. We then give an introduction to the theory of *consistent chains* toward a preliminary analysis of units of higher L-length in $K\Gamma$. We conclude our work showing that units in torsion-free-supersoluble group algebras are bounded, in that the supports of units and their inverses

E-mail addresses: D.A.Craven@bham.ac.uk (D.A. Craven), pappas@maths.ox.ac.uk (P. Pappas).

^a School of Mathematics, University of Birmingham, Egbaston, Birmingham, B15 2TT, United Kingdom

b Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom

^{*} Corresponding author.

are related through a property (U) and the induced length function L.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The unit conjecture for group algebras states that if K is a field and G is a torsion-free group, then all units¹ of the group algebra KG are trivial; that is, all units are of the form λg for some $\lambda \in K \setminus \{0\}$ and $g \in G$ [11,13,18,19]. The best result to date is entirely group-theoretic, concerning group algebras of unique-product groups [13,14,20]. (A group G is a *unique-product group* if, given any two non-empty finite subsets X and Y of G, there exists an element $g \in G$ having a unique representation of the form g = xy with $x \in X$ and $y \in Y$.) Unique-product groups typify ordered, locally indicable, and right-ordered groups, and for some time it remained an open question whether there exist torsion-free groups that are not unique-product groups. Using small cancellation theory, Rips and Segev [17] gave the first example of a torsion-free group that is not a unique-product group.

For the unit conjecture beyond unique-product groups, it is natural to consider finitely generated, torsion-free, virtually abelian groups; that is, groups with a short exact sequence

$$1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$$

with H abelian and G/H finite. If G/H is cyclic then G is right-orderable, and therefore a unique-product group, so nothing new occurs. The simplest example where G/H is finite non-cyclic is

$$\Gamma = \langle x, y \mid xy^2x^{-1} = y^{-2}, yx^2y^{-1} = x^{-2} \rangle,$$

which satisfies the short exact sequence

$$1 \to \mathbb{Z}^3 \to \Gamma \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to 1.$$

Called the 'fours group', Γ was shown by Passman [13, p. 606] to be torsion-free and non-right orderable. Promislow [16], using a random search algorithm, exhibited a 14-element subset $\mathscr{P} \subset \Gamma$ such that $\mathscr{P} \cdot \mathscr{P}$ has no unique product.² Since then, very little progress on the unit conjecture has been made, and, in particular, it has been a long-standing question whether the Promislow set \mathscr{P} could be the support of a unit over some field K.

In this paper we show that the answer is 'no', and in fact prove something slightly stronger, namely that no subset of the Promislow set \mathscr{P} is the support of a non-trivial unit in $K\Gamma$ over any field K. It is of interest to note that our techniques are not simply group-theoretic. Motivated by work of Cohn [3] we introduce the class of (X,Y,N)-group algebras KG, and following Passman [13, Theorem 13.3.7] we define an induced length function $L:KG\to\mathbb{N}\cup\{-\infty\}$ using the fact that G has the infinite dihedral group as a homomorphic image. We develop *splitting theorems* for (X,Y,N)-group algebras, and as an application show that if $\sigma\in KG$ is a unit then $L(\sigma)=L(\sigma^{-1})$. We then extend our analysis of splittings to obtain a canonical *reduced split-form* for all units in (X,Y,N)-group algebras. This leads to the study of group algebras of virtually abelian groups and their representations as subalgebras of suitable matrix rings. This viewpoint allows us to develop a determinant condition for units in such group algebras. We apply our results to the *fours group*

$$\Gamma = \langle x, y \mid xy^2x^{-1} = y^{-2}, \ yx^2y^{-1} = x^{-2} \rangle$$

¹ Unit here means two-sided unit. If K is a field of characteristic 0, then Kaplansky's theorem [8], [13, p. 38] states that every unit in KG is two-sided. The general result for group algebras over fields of characteristic p remains open [2,4,5].

² It is an open question as to whether every unique-product group is right orderable.

Download English Version:

https://daneshyari.com/en/article/4585137

Download Persian Version:

https://daneshyari.com/article/4585137

<u>Daneshyari.com</u>