Inversion formula for the growth function of a cancellative monoid

Kyoji Saito

The University of Tokyo, Institute for the Physics and Mathematics of the Universe, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, Japan

A R T I C L E I N F O

Article history:

Received 23 February 2012
Available online 24 April 2013
Communicated by Masaki Kashiwara

Keywords:

Monoid
Growth function
Common multiple
Inversion formula

A B S T R A C T

Let (M, deg) be a cancellative monoid M equipped with a degree map deg : $M \rightarrow \mathbb{R} \geqslant 0$, and let $P_{M, \operatorname{deg}}(t):=\sum_{u \in M / \sim} t^{\operatorname{deg}(u)}$ be its generating series (here, $u \sim_{l} v$ for $u, v \in M$ if $\left.u\right|_{l} v$ and $\left.v\right|_{l} u$, see Section 2, Definition), called the growth function of (M, deg). In the present paper, we introduce the skew-growth function $N_{M, \operatorname{deg}}(t)$ of (M, deg), and prove the inversion formula

$$
P_{M, \operatorname{deg}}(t) \cdot N_{M, \operatorname{deg}}(t)=1
$$

where the skew-growth function $N_{M, \operatorname{deg}}(t)$ is a signed generating series

$$
N_{M, \operatorname{deg}}(t):=1+\sum_{T \in \mathrm{~T}\left(M, I_{0}\right)}(-1)^{\# J_{1}+\cdots+\# J_{n}-n+1} \sum_{\Delta \in \operatorname{mcm}(T)} t^{\operatorname{deg}(\Delta)}
$$

of minimal common multiples $\Delta \in \operatorname{mcm}(T)$ of towers $T \in \mathrm{~T}\left(M, I_{0}\right)$ associated with the minimal set I_{0} of M / \sim.
If $M=\mathbb{Z}_{>0}$ is the multiplicative monoid of positive integers with deg $=\log$, then $P_{M, \operatorname{deg}}(\exp (-s))$ is Riemann zeta function and the inversion formula turns out to be the Euler product formula. We discuss more examples on the behavior of the analytic function $N_{M, \operatorname{deg}}(\exp (-s))$ on the boundary line $\Re(s)=$ abscissa of absolute convergence of $P_{M, \operatorname{deg}}(\exp (-s))$.
© 2013 Elsevier Inc. All rights reserved.

[^0]
Contents

1. Introduction 315
2. Minimal common multiples 317
3. Tower of minimal common multiples 318
4. Growth function and skew-growth function 319
5. Inversion formula 322
6. Examples 325
7. Positive homogeneous presentation of a monoid 329
Acknowledgments 331
References 331

1. Introduction

Let M be a monoid, i.e. a semi-group with the unit 1 , and let deg: $M \rightarrow \mathbb{R}_{\geqslant 0}$ be a discretely valued degree map on M (see Section 4). Then the (spherical) growth function of M with respect to deg is defined as the generating series:

$$
P_{M, \operatorname{deg}}(t):=\sum_{[u] \in M / \sim} t^{\operatorname{deg}([u])}
$$

where the equivalence $u \sim v$ for $u, v \in M$ means the mutual left divisibility relations $\left.u\right|_{l} v$ and $\left.v\right|_{l} u$, and $[u$] denotes the equivalence class of u (see Section 2, Definition). Even though the definition of the growth function is a simple generalization of that for the case of groups, not much work seems to be available except for some studies of special cases or some general works on language [$\mathrm{A}-\mathrm{N}, \mathrm{Bra}$, Bri-S,Bro,C,C-F,D,G,G-P,I1,Ku,P,S1,S2,S3,S4,S-I], and we know little about the general nature of these functions. The purpose of the present paper is to give a new approach to the subject by giving a presentation of the inversion function $\frac{1}{P_{M, I}(t)}$ by a certain "skew-growth function" 1 of common multiple sets in the monoid M.

Let us explain the inversion function in the most naive case studied in [A-N] and in [S2,S3]. Let M be a monoid generated by a finite set I satisfying some positive homogeneous relations. The monoid naturally admits an integer-valued degree map by giving weight 1 to each generator in I. Suppose, further, that M is cancellative (see Section 2) and that any subset J of I either admits a unique least right common multiple Δ_{J} or has no common multiple in M (typically the case for Artin monoids [Bri-S,D]). Then the inversion function $P_{M, I}(t)^{-1}$ is given by

$$
N_{M, I}(t):=\sum_{J \subset I}(-1)^{\# J} t^{\operatorname{deg}\left(\Delta_{J}\right)}
$$

where the summation index J runs over all subsets of I such that there exists in M the least right common multiple Δ_{J} of all elements $u \in J .{ }^{2}$

That is, the inversion function of the growth function for this class of monoids is given by the skew-growth function $N_{M, I}(t)$ of the set $\left\{\Delta_{J}\right\}_{J \subset I}$ of all least right common multiples for subsets J of the generator set I. However, in general, a monoid may not admit a least right common multiple Δ_{J} for a given set $J \subset M$. More precisely, even if there exist some right common multiples of J, there may not exist

[^1]
https://daneshyari.com/en/article/4585194

Download Persian Version:

https://daneshyari.com/article/4585194

Daneshyari.com

[^0]: E-mail address: kyoji.saito@ipmu.jp.
 0021-8693/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jalgebra.2013.01.037

[^1]: ${ }^{1}$ By a skew-growth function, we mean a suitably signed generating series.
 ${ }^{2}$ In this case, $N_{M, I}(t)$ is a polynomial. A proof of the inversion formula is given by the fact that the coefficients of $N_{M, I}(t)$ give the recursion relation on the sequence of the coefficients of $P_{M, \operatorname{deg}}(t)$. This fact will be generalized in Section 5 of the present paper. Zero loci of the polynomial $N_{M, I}(t)$ plays a quite important role in the study of limit functions [$\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$, K-T-Y], which motivated the author to the present work.

