
The Journal of Systems and Software 85 (2012) 1682–1698

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Coding-error based defects in enterprise resource planning software:
Prevention, discovery, elimination and mitigation

Isaac Wounganga, Felix O. Akinladejob, David W. Whiteb,
Mohammad S. Obaidatc,∗, Fellow of IEEE, Fellow of CS
a Department of Computer Science, Ryerson University, Toronto, ON, Canada
b Faculty of Engineering and Computing, University of Technology, Jamaica
c Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, USA

a r t i c l e i n f o

Article history:
Received 8 August 2011
Received in revised form 14 February 2012
Accepted 15 February 2012
Available online 10 March 2012

Keywords:
Defect density
Coding defects
ERP
Software development
Defect reduction
Code auditing
Static code analysis
Software testing

a b s t r a c t

Software defects due to coding errors continue to plague the industry with disastrous impact, especially
in the enterprise application software category. Identifying how much of these defects are specifically due
to coding errors is a challenging problem. In this paper, we investigate the best methods for preventing
new coding defects in enterprise resource planning (ERP) software, and discovering and fixing existing
coding defects. A large-scale survey-based ex-post-facto study coupled with experiments involving static
code analysis tools on both sample code and real-life million lines of code open-source ERP software
were conducted for such purpose. The survey-based methodology consisted of respondents who had
experience developing ERP software. This research sought to determine if software defects could be
merely mitigated or totally eliminated, and what supporting policies, procedures and infrastructure were
needed to remedy the problem. In this paper, we introduce a hypothetical framework developed to
address our research questions, the hypotheses we have conjectured, the research methodology we have
used, and the data analysis methods used to validate the stated hypotheses. Our study revealed that: (a)
the best way for ERP developers to discover coding-error based defects in existing programs is to choose
an appropriate programming language; perform a combination of manual and automated code auditing,
static code analysis, and formal test case design, execution and analysis, (b) the most effective ways to
mitigate defects in an ERP system is to track the defect densities in the ERP software, fix the defects
found, perform regression testing, and update the resulting defect density statistics, and (c) the impact
of epistemological and legal commitments on the defect densities of ERP systems is inconclusive.

We feel that our proposed model has the potential to vastly improve the quality of ERP and other similar
software by reducing the coding-error defects, and recommend that future research aimed at testing the
model in actual production environments.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Enterprise resource planning software (ERP) belongs to a class of
large-scale software called enterprise application software. Enter-
prise applications are complex software systems that are expensive
to build, debug and maintain (Rettig, 2007). They were first con-
ceptualized during the decade of the 1970s but could not be built
because of the limitations in the hardware and programming lan-
guages of that era. By the decade of the 1980s however, four-tenths
of all companies earning over one billion United States dollars

∗ Corresponding author.
E-mail addresses: iwoungan@scs.ryerson.ca (I. Woungang),

fakinladejo@utech.edu.jm (F.O. Akinladejo), dwwhite@utech.edu.jm (D.W. White),
obaidat@monmouth.edu, m obaidat@yahoo.com (M.S. Obaidat).

had implemented some sort of enterprise application (Markus and
Tanis, 2011). In 2006, the enterprise application software market
was valued at US$100 billion, but software failures were estimated
to cost the industry between US$20 billion and US$50 billion. These
failures were not limited to coding defects, but coding defects
nevertheless are a significant concern for enterprise software in
general. On one hand, efforts have been made to find practical ways
to verify that ERP and other types of software are free of defects.
On the other hand, full software verification for software with
large code bases such as ERP software has been proven to belong
to the class of problems considered undecidable and theoretically
intractable.

In this paper, we attempt to develop a practical model for
preventing, discovering, fixing and reducing defects in enterprise
software. Though our recommendations are applicable to enter-
prise software in general, we focus on ERP software. The overall

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.02.034

dx.doi.org/10.1016/j.jss.2012.02.034
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:iwoungan@scs.ryerson.ca
mailto:fakinladejo@utech.edu.jm
mailto:dwwhite@utech.edu.jm
mailto:obaidat@monmouth.edu
mailto:m_obaidat@yahoo.com
dx.doi.org/10.1016/j.jss.2012.02.034

I. Woungang et al. / The Journal of Systems and Software 85 (2012) 1682–1698 1683

goal of the paper is to improve the understanding of preventing,
discovering, fixing and reducing defects in enterprise software.
Specifically, we have attempted to address the following research
questions (RQs):

• RQ1. What are the key programming techniques that exist, which
prevent software defects in ERP?

• RQ2. What are the best methodologies existing to discover software
defects in ERP?

• RQ3. What are the most effective ways to mitigate software defects
once they are discovered in ERP?

• RQ4. To what extent can software defects be eliminated in ERP?
• RQ5. How do epistemological and legal commitments impact the

level of defects in ERP?

We have conducted a review of the literature to determine the
attributes that could affect the defect density of ERP software,
and used these attributes to formulate a set of hypotheses and
develop a theoretical framework. We then conducted a survey-
based statistical study of ERP software developers internationally
and a series of experiments involving static code analysis tools on
both sample code and real-life million lines of code open-source
ERP software to determine if each of our hypotheses should be
rejected or accepted. We used the results from these to revise our
model highlighting the main factors affecting ERP software defect
density.

The rest of the paper is organized as follows. Section 2 summa-
rizes some related works, the nature of ERP software; techniques
used to discover, track and reduce defects; testing methodologies
and the use of static code analysis tools. In Section 3, we hypoth-
esize various factors that affect ERP software. Section 4 describes
our research methods. Section 5 describes the results of the sur-
vey and experiments. Section 6 discusses our research findings and
highlights some future research directions.

2. Related work

2.1. History of ERP software

Markus and Tanis (2011) theorized that in the decade of the
1970s, although there was a vision to create enterprise applica-
tion software to integrate individual information systems within
organizations, computing capacity and programming language
capabilities were too limited to cause such applications to be
built. Instead, organizations constructed “islands of automation”,
meaning that a new application was built for each individual
information processing need within the same organization. By
the 1980s however, the vision of enterprise applications begun
to be realized, although somewhat slowly, as organizations were
able to interface the individual information systems into a homo-
geneous one. Markus and Tanis (2011) also indicated that the
mid-1990s was a turning point for the development and adoption
of enterprise application software since more and more organiza-
tions embraced the client-server architecture over the traditional
and comparatively expensive mainframe architecture. They also
stated that by the year 1998, approximately 40% of all organi-
zations with annual revenues of more than one billion dollars
had implemented some form of enterprise application software.
In Pearlman (2007) and O’Leary (2000), it was stated that enter-
prise application software were complex software applications. In
Currie (2006), it was further noticed that enterprise application
software were not only complex, but also prone to high defect
rates.

2.2. Programming languages

Application software such as ERP were developed using com-
puter programming languages. In Louden (2003), programming
languages were described as notational systems for describing
computation in both machine-readable and human-readable form.
The history of programming languages was explored in Beer (2004),
where the author traced the development of the first program-
ming languages in the early 1950s up to the objected-oriented and
scripting languages of the early 2000s. Both Louden (2003) and
Stegmann (1979) described the drawback faced by languages based
on the Von Newman architecture (so-called the Von Neumann
bottleneck). In TIOBE Software (2011), programming languages
were generally categorized into statically and dynamically typed,
and further, into object-oriented, procedural, functional and logi-
cal. Also highlighted was their correlation to mathematical theory
which allows the behavior of a computer programs to be described
abstractly and precisely, enabling a determination of whether or
not it would run correctly, and allow very concise code to be
written for very complex tasks. Louden (2003) stated that the
object-oriented programming had been very successful in allow-
ing programs to be written using reusable and extensible code
which mimics the behavior of objects in the real world, however,
such programs were harder to understand and describe abstractly
making it harder to predict their behavior and determine their cor-
rectness. Despite this, Louden (2003) stated that object-oriented
programming languages were becoming the languages of choice
in developing application software. The language popularity index
in TIOBE Software (2011) revealed that the top five languages (in
the order of popularity) as of November 2010 were: Java, C, C++,
PHP, and C#, three of which were object-oriented. The alternative
language popularity index in SourceForge (2011) lists the world’s
top five languages as of February, 2011 as: C, Java, PHP, BASIC, and
C#. By correlating both lists, it was determined that the world’s
most popular programming languages were Java, C, PHP, and C#,
not necessarily in that order.

Louden (2003) and Beer (2004) seemed to suggest that there
might be a relationship between the choice of programming lan-
guage and the possibility of bugs being present in the software
being developed. According to (Phipps, 1999), a normal C++ pro-
gram can have between two to three times as many bugs per line
of code as a normal Java program, can generate between 15% and
50% more defects per line of code, and could take more time to
debug compared to the normal Java program (in average 6t where
t is the time taken by a normal Java program). However, there were
other authors (Candea et al., 2004; Kaelin, 2011) who believed that
no matter what programming language was chosen, software bugs
or errors were inevitable.

2.3. Complexity and customization

In Fowler (2003), it was argued that the complexity of software
makes it harder to change. During the Turing Award Lecture in
1980, C. A. R. Hoare, co-developer of a number of programming
languages, opined that there were two ways to construct software:
either making it so simple that there is obviously no defect or mak-
ing it so complex that there are no obvious defects (Hoare, 1981). In
1976, McCabe introduced a discourse on measuring and reducing
the complexity of programs, where graph theory was used to map,
analyze and reduce program complexity. It was stated that reduc-
ing the complexity of a program could not guarantee a program to
be completely bug-free, but would instead “surface more bugs and
improve the quality of the software.” Despite McCabe’s arguments
(McCabe, 1976) and the wide adoption of his complexity measure,
Fenton and Melton (1990) presented a mathematical formulation
in which it was not clear that one module X, with a higher McCabe

Download English Version:

https://daneshyari.com/en/article/458568

Download Persian Version:

https://daneshyari.com/article/458568

Daneshyari.com

https://daneshyari.com/en/article/458568
https://daneshyari.com/article/458568
https://daneshyari.com

