

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the annihilators of local cohomology modules

Kamal Bahmanpour^a, Jafar A'zami^{b,*}, Ghader Ghasemi^b

^a Department of Mathematics, Ardabil Branch, Islamic Azad University, P.O. Box 5614633167, Ardabil, Iran ^b Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

ARTICLE INFO

Article history: Received 5 March 2011 Available online 4 May 2012 Communicated by Bernd Ulrich

MSC: 13D45 14B15 13E05

Keywords: Associated primes Krull dimension Local cohomology

ABSTRACT

Let (R, \mathfrak{m}) be a commutative Noetherian complete local ring, M a non-zero finitely generated R-module of dimension $d \ge 1$, and $T_R(M) := \bigcup \{N: N \le M \text{ and } \dim N < \dim M\}$. In this paper we calculate the annihilator of the top local cohomology module $H^d_{\mathfrak{m}}(M)$. More precisely, we show that $0:_R H^d_{\mathfrak{m}}(M) = 0:_R M/T_R(M)$. Moreover, for every positive integer n, we calculate the radical of the annihilator of $H^n_{\mathfrak{m}}(M)$. More precisely, we prove that if $H^n_{\mathfrak{m}}(M)$ is not finitely generated then $\operatorname{Rad}(0:_R H^n_{\mathfrak{m}}(M)) = \bigcap_{\mathfrak{p} \in S} \mathfrak{p}$, where

 $S = \{ \mathfrak{p} \in \operatorname{Spec} R \colon (H_{\mathfrak{p}}^{n-1}(M))_{\mathfrak{p}} \neq 0 \text{ and } \dim R/\mathfrak{p} = 1 \}.$

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian local ring (with identity) and I an ideal of R. For an R-module M, the *i*th local cohomology module of M with respect to I is defined as

$$H_I^i(M) = \varinjlim_{n \ge 1} \operatorname{Ext}_R^i (R/I^n, M).$$

For an Artinian *R*-module *A* we denote by $\operatorname{Att}_R A$ the set of attached prime ideals of *A*. For each *R*-module *L*, we denote by $\operatorname{Assh}_R L$ (resp. $\operatorname{mAss}_R L$) the set { $\mathfrak{p} \in \operatorname{Ass}_R L$: $\dim R/\mathfrak{p} = \dim L$ } (resp. the set of minimal primes of $\operatorname{Ass}_R L$). Also, for any ideal \mathfrak{a} of *R*, we denote { $\mathfrak{p} \in \operatorname{Spec} R$: $\mathfrak{p} \supseteq \mathfrak{a}$ } by $V(\mathfrak{a})$. Finally, for any ideal \mathfrak{b} of *R*, the radical of \mathfrak{b} , denoted by $\operatorname{Rad}(\mathfrak{b})$, is defined to be the set

* Corresponding author.

0021-8693/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2012.03.026

E-mail addresses: bahmanpour.k@gmail.com (K. Bahmanpour), jafar.azami@gmail.com, azami@uma.ac.ir (J. A'zami), ghghasemi@uma.ac.ir (G. Ghasemi).

 $\{x \in R: x^n \in b \text{ for some } n \in \mathbb{N}\}$. We refer the reader to [4] or [2] for more details about local co-homology. The main results of this paper are the following:

Theorem 1.1. Let (R, \mathfrak{m}) be a complete Noetherian local ring and M be a non-zero finitely generated R-module of dimension d. Then

$$0:_{R} H^{d}_{\mathfrak{m}}(M) = 0:_{R} M/T_{R}(M),$$

where, $T_R(M) := \bigcup \{N: N \leq M \text{ and } \dim N < \dim M \}$.

Theorem 1.2. Let (R, \mathfrak{m}) be a complete Noetherian local ring and $n \ge 1$ be an integer. Let M be a non-zero finitely generated R-module such that dim $M \ge 1$. Set $J := \operatorname{Rad}(0:_R H^n_{\mathfrak{m}}(M))$ and $S = \{\mathfrak{p} \in \operatorname{Spec} R: (H^{n-1}_{\mathfrak{p}}(M))_{\mathfrak{p}} \neq 0$ and dim $R/\mathfrak{p} = 1\}$. Then the following statements hold:

(i) If Hⁿ_m(M) is not finitely generated, then J = ∩_{p∈S} p.
(ii) If Hⁿ_m(M) is non-zero and finitely generated, then J = m.

Theorem 1.3. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d. Then $0:_R H^d_\mathfrak{m}(R) = T_R(R)$.

For any unexplained notation and terminology we refer the reader to [2] and [5].

2. The results

To prove the main results of this paper, we need the following proposition.

Proposition 2.1. Assume that (R, \mathfrak{m}) is a Cohen–Macaulay local (Noetherian) ring of dimension d and for every $\mathfrak{p} \in \operatorname{Ass}_R R$ the zero-dimensional local ring $R_\mathfrak{p}$ is Gornestein. Let M be a finitely generated R-module such that $\operatorname{Ass}_R M \subseteq \operatorname{Ass}_R R$. Then there is an exact sequence $0 \to M \to \bigoplus_{i=1}^n R$ for some positive integer n.

Proof. See [3, Theorem 3.5]. □

The following result follows from Proposition 2.1.

Corollary 2.2. Assume that (R, m) is a Gorenstein local (Noetherian) ring and I be an ideal of R. Then the following statements are equivalent:

(i) $\operatorname{Ass}_R R/I \subseteq \operatorname{Ass}_R R$.

(ii) There is an exact sequence $0 \to R/I \to \bigoplus_{i=1}^{n} R$ for some positive integer n.

(iii) There is an ideal J of R such that $I = 0 :_R J$.

(iv) $I = 0 :_R (0 :_R I)$.

Proof. (i) \Leftrightarrow (ii) The assertion follows from Proposition 2.1.

(ii) \rightarrow (iii) Let $f: R/I \rightarrow \bigoplus_{i=1}^{n} R$ be a monomorphism such that $f(1+I) = (a_1, \dots, a_n)$. Set $J := Ra_1 + \dots + Ra_n$. It is easy to see that $I = 0:_R J$.

(iii) \Leftrightarrow (iv) Let $I = 0 :_R J$. Then $J \subseteq 0 :_R I$ and so $I = 0 :_R J \supseteq 0 :_R (0 :_R I) \supseteq I$ that implies $I = 0 :_R (0 :_R I)$.

(iv) \rightarrow (ii) Let $0:_R I = Ra_1 + \cdots + Ra_n$. We define $f: R/I \rightarrow \bigoplus_{i=1}^n R$ with $f(r+I) = (ra_1, \dots, ra_n)$. Then f is a monomorphism. \Box

The following lemma will be quite useful in the proof of the first main theorem.

Lemma 2.3. Let (R, m) be a local Noetherian ring and M a finitely generated R-module. Let p be a prime ideal of R such that dim R/p = 1 and $t \ge 1$ be an integer. Then the following conditions are equivalent:

Download English Version:

https://daneshyari.com/en/article/4585715

Download Persian Version:

https://daneshyari.com/article/4585715

Daneshyari.com