

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Incompressibility of orthogonal Grassmannians of rank 2

Bryant G. Mathews *,1

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, United States

ARTICLE INFO

Article history: Received 23 July 2011 Available online 10 October 2011 Communicated by Eva Bayer-Fluckiger

Keywords: Canonical dimension Incompressibility Orthogonal Grassmannians Motivic decomposition

ABSTRACT

For a nondegenerate quadratic form φ on a vector space V of dimension 2n+1, let X_d be the variety of d-dimensional totally isotropic subspaces of V. We give a sufficient condition for X_2 to be 2-incompressible, generalizing in a natural way the known sufficient conditions for X_1 and X_n . Key ingredients in the proof include the Chernousov–Merkurjev method of motivic decomposition as well as Pragacz and Ratajski's characterization of the Chow ring of $(X_2)_E$, where E is a field extension splitting φ .

© 2011 Elsevier Inc. All rights reserved.

1. Preliminaries

Before stating our main theorem (2.3) below, we recall the notions of canonical *p*-dimension, *p*-incompressibility, and higher Witt index.

Let X be a scheme over a field F, and let p be a prime or zero. A field extension K of F is called a *splitting field of* X (or is said to *split* X) if $X(K) \neq \emptyset$. A splitting field K is called p-generic if, for any splitting field K of X, there is an K-place $K \rightharpoonup K$ for some finite extension K of degree prime to K. In particular, K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K there is an K-place K is 0-generic if for any splitting field K is 0-generic if K is

The canonical p-dimension of a scheme X over F was originally defined [1,2] as the minimal transcendence degree of a p-generic splitting field K of X. When X is a smooth complete variety, the original algebraic definition is equivalent to the following geometric one [2,3].

Definition 1.1. Let X be a smooth complete variety over F. The *canonical p-dimension* $\operatorname{cdim}_p(X)$ of X is the minimal dimension of the image of a morphism $X' \to X$, where X' is a variety over F admitting a dominant morphism $X' \to X$ with F(X')/F(X) finite of degree prime to p. The canonical 0-dimension of X is thus the minimal dimension of the image of a rational morphism $X \dashrightarrow X$.

^{*} Fax: +1 626 387 5907.

E-mail address: bmathews@apu.edu.

¹ Present address: Department of Mathematics and Physics, Azusa Pacific University, 701 E Foothill Blvd., Azusa, CA 91702-2606, United States.

In the case p = 0, we will drop the p and speak simply of *generic* splitting fields and canonical *dimension* $\operatorname{cdim}(X)$.

For a third definition of canonical p-dimension as the essential p-dimension of the detection functor of a scheme X, we refer the reader to Merkurjev's comprehensive exposition [3] of essential dimension.

For a smooth complete variety X, the inequalities

$$\operatorname{cdim}_{p}(X) \leqslant \operatorname{cdim}(X) \leqslant \operatorname{dim}(X)$$

are clear from Definition 1.1. Note also that if X has a rational point, then cdim(X) = 0 (though the converse is not true).

Definition 1.2. When a smooth complete variety X has canonical p-dimension as large as possible, namely $\operatorname{cdim}_p(X) = \dim(X)$, we say that X is p-incompressible.

It follows immediately that if X is p-incompressible, it is also incompressible (i.e. 0-incompressible). We next recall the definitions of absolute and relative higher Witt indices, introduced by Knebusch in [4]. Our discussion follows [5, §90]. The Witt index $i_0(\varphi)$ of a quadratic form φ is the number of copies of the hyperbolic plane $\mathbb H$ which appear in the Witt decomposition of φ . Now let φ be a nondegenerate quadratic form over a field F and set $F_0 := F$ and $\varphi_0 := \varphi_{an}$, the anisotropic part of φ . We proceed to recursively define $F_k := F_{k-1}(\varphi_{k-1})$, $\varphi_k := (\varphi_{F_k})_{an}$ for $k = 1, 2, \ldots$, stopping at F_h such that $\dim \varphi_h \leqslant 1$.

Definition 1.3. For $k \in \{0, 1, ..., h\}$, the k-th absolute higher Witt index $j_k(\varphi)$ of φ is defined to be $i_0(\varphi_{F_k})$. For $k \in \{1, 2, ..., h\}$, the k-th relative higher Witt index $i_k(\varphi)$ of φ is defined to be the difference

$$i_k(\varphi) := j_k(\varphi) - j_{k-1}(\varphi).$$

The 0-th relative higher Witt index of φ is the usual Witt index $i_0(\varphi)$.

It follows from the definition that

$$0 \leqslant \mathfrak{j}_0(\varphi) < \mathfrak{j}_1(\varphi) < \cdots < \mathfrak{j}_h(\varphi) = [(\dim \varphi)/2].$$

Moreover, it can be shown that the set $\{j_0(\varphi), \ldots, j_h(\varphi)\}$ of absolute higher Witt indices of φ is equal to the set of all Witt indices $i_0(\varphi_K)$ for K an extension field of F.

2. Introduction

Let φ be a nondegenerate quadratic form on a vector space V of dimension 2n+1 over a field F. Associated to φ there are smooth projective varieties X_1, X_2, \ldots, X_n , where X_d is the variety of d-dimensional totally isotropic subspaces of V. The variety X_1 is simply the projective quadric hypersurface associated to the quadratic form φ .

We recall the following result proved in [6] and also in [5, Ch. XIV and §90].

Theorem 2.1 (Karpenko, Merkurjev). If the quadric X_1 is anisotropic, then

$$\operatorname{cdim}_2(X_1) = \operatorname{cdim}(X_1) = \operatorname{dim}(X_1) - \mathfrak{i}_1(\varphi) + 1.$$

In particular, X_1 is 2-incompressible if and only if $i_1(\varphi) = 1$.

Download English Version:

https://daneshyari.com/en/article/4586010

Download Persian Version:

https://daneshyari.com/article/4586010

<u>Daneshyari.com</u>